1
|
Nolte T, Spieß F, Jacobs AK, Kemper N, Visscher C. Process Hygiene Criterion for Campylobacter and Number of Campylobacter Enteritis Cases in Northwest Germany. Foods 2024; 13:281. [PMID: 38254584 PMCID: PMC10815233 DOI: 10.3390/foods13020281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 12/27/2023] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Campylobacteriosis is the most commonly reported bacterial foodborne disease in the European Union. Its transmission is often associated with the consumption of poultry meat. In 2018, Regulation (EC) No. 2017/1495 introduced a process hygiene criterion and with this, the testing requirements for Campylobacter. The results of microbiological testing for Campylobacter of chicken carcass neck skin samples from several slaughter lines in Northwest Germany collected by the food business operators and contamination levels (cfu/g Campylobacter) of these samples were analysed from 2018 to 2021. Classification into three different categories was made based on contamination levels. The proportion of highly contaminated (category three) neck samples (>1000 cfu/g) decreased from 2018 to 2021. Our analysis showed a relationship between the number of neck samples with high Campylobacter contamination levels (>1000 cfu/g) and human cases in Northwest Germany. Spearman's rank test (p < 0.01) showed a higher correlation in 2018 (0.66) and 2019 (0.58) compared to 2020 and 2021. Campylobacter enteritis cases in Northwest Germany stayed at a low level in 2020 and 2021. It remains unclear whether the decrease in reported Campylobacter enteritis cases is related to a decrease in Campylobacter levels on chicken carcasses or due to other reasons like underreporting during the COVID-19 pandemic, and therefore must be investigated in further analyses.
Collapse
Affiliation(s)
- Tobias Nolte
- Science and Innovation for Sustainable Poultry Production (WING), University of Veterinary Medicine Hannover, Foundation, D-49377 Vechta, Germany; (A.-K.J.); (N.K.); (C.V.)
| | - Fabian Spieß
- Institute for Animal Nutrition, University of Veterinary Medicine Hannover, Foundation, D-30173 Hannover, Germany;
| | - Anne-Katrin Jacobs
- Science and Innovation for Sustainable Poultry Production (WING), University of Veterinary Medicine Hannover, Foundation, D-49377 Vechta, Germany; (A.-K.J.); (N.K.); (C.V.)
| | - Nicole Kemper
- Science and Innovation for Sustainable Poultry Production (WING), University of Veterinary Medicine Hannover, Foundation, D-49377 Vechta, Germany; (A.-K.J.); (N.K.); (C.V.)
- Institute for Animal Hygiene, Animal Welfare and Farm Animal Behaviour, University of Veterinary Medicine Hannover, Foundation, D-30173 Hannover, Germany
| | - Christian Visscher
- Science and Innovation for Sustainable Poultry Production (WING), University of Veterinary Medicine Hannover, Foundation, D-49377 Vechta, Germany; (A.-K.J.); (N.K.); (C.V.)
- Institute for Animal Nutrition, University of Veterinary Medicine Hannover, Foundation, D-30173 Hannover, Germany;
| |
Collapse
|
2
|
Roa-Bautista A, Brown LAK, Tadros S, Burns SO, Godbole G, Lowe DM. Clinical Features, Immunological Characteristics, and Treatment Outcomes of Campylobacter spp. Infections in Patients With Common Variable Immunodeficiency. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:3493-3501.e4. [PMID: 37406804 DOI: 10.1016/j.jaip.2023.06.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 07/07/2023]
Abstract
BACKGROUND Campylobacter infection usually causes a self-limited clinical illness lasting 5 to 7 days, resolving without antimicrobial treatment in immunocompetent subjects. However, an inadequate immune response can lead to a prolonged and severe disease requiring antibiotics and more aggressive therapeutic approaches. OBJECTIVE To comprehensively describe Campylobacter spp. infections in patients with common variable immunodeficiency (CVID). METHODS A retrospective cohort of 14 CVID patients with Campylobacter infection and 95 CVID controls attending the immunology clinic at a large tertiary hospital was assessed. Immunological, clinical, and microbiological parameters were measured with median follow-up over 20 years in both cohorts. Patients were treated according to a novel algorithm for Campylobacter in antibody-deficient patients. RESULTS Campylobacter patients had a higher proportion of CD21lowCD38low and transitional B cells (median 38.0% vs 14.2% and 5.4% vs 3.2%) and lower long-term average CD19+ B cells (median 0.06 vs 0.18 × 109/L) and CD4+ T cells (0.41 vs 0.62 × 109/L) in comparison with the controls. Similarly, Campylobacter patients showed a decline in B cells (median 0.02 vs 0.14 × 109/L), CD4+ T cells (0.33 vs 0.59 × 109/L), CD8+ T cells (0.26 vs 0.62 × 109/L), and natural killer cells (0.08 vs 0.18 × 109/L) over time. Antimicrobial resistance, especially to macrolides and fluoroquinolones, was common. Bacterial clearance with associated clinical improvement was obtained after a median of 20 and 113 days for acute Campylobacter (resolution within 3 mo of onset) and chronic Campylobacter (>3 mo) infections, respectively. Seven received first-line treatment (azithromycin or chloramphenicol), 4 second-line (neomycin), and 3 third-line (combination of tigecycline, chloramphenicol, and ertapenem; 1 received gentamicin owing to resistance to carbapenems). CONCLUSIONS Our study highlights immunological and clinical characteristics of recurrent Campylobacter infections in patients with CVID. Our treatment algorithm was successful and should be evaluated in a larger cohort.
Collapse
Affiliation(s)
- Adriel Roa-Bautista
- Department of Immunology, Marques de Valdecilla University Hospital, Santander, Spain; Department of Clinical Immunology, Royal Free London NHS Foundation Trust, London, UK
| | - Li-An K Brown
- Institute of Immunity and Transplantation, University College London, London, UK
| | - Susan Tadros
- Department of Clinical Immunology, Royal Free London NHS Foundation Trust, London, UK
| | - Siobhan O Burns
- Department of Clinical Immunology, Royal Free London NHS Foundation Trust, London, UK; Institute of Immunity and Transplantation, University College London, London, UK
| | - Gauri Godbole
- Department of Infectious and Tropical Diseases, University College London Hospitals NHS Foundation Trust, London, UK; Gastrointestinal Bacteria Reference Unit, UK Health Security Agency, London, UK
| | - David M Lowe
- Department of Clinical Immunology, Royal Free London NHS Foundation Trust, London, UK; Institute of Immunity and Transplantation, University College London, London, UK.
| |
Collapse
|
3
|
El-Saadony MT, Saad AM, Yang T, Salem HM, Korma SA, Ahmed AE, Mosa WFA, Abd El-Mageed TA, Selim S, Al Jaouni SK, Zaghloul RA, Abd El-Hack ME, El-Tarabily KA, Ibrahim SA. Avian campylobacteriosis, prevalence, sources, hazards, antibiotic resistance, poultry meat contamination, and control measures: a comprehensive review. Poult Sci 2023; 102:102786. [PMID: 37454641 PMCID: PMC10371856 DOI: 10.1016/j.psj.2023.102786] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/05/2023] [Accepted: 05/13/2023] [Indexed: 07/18/2023] Open
Abstract
Avian campylobacteriosis is a vandal infection that poses human health hazards. Campylobacter is usually colonized in the avian gut revealing mild signs in the infected birds, but retail chicken carcasses have high contamination levels of Campylobacter spp. Consequently, the contaminated avian products constitute the main source of human infection with campylobacteriosis and result in severe clinical symptoms such as diarrhea, abdominal pain, spasm, and deaths in sensitive cases. Thus, the current review aims to shed light on the prevalence of Campylobacter in broiler chickens, Campylobacter colonization, bird immunity against Campylobacter, sources of poultry infection, antibiotic resistance, poultry meat contamination, human health hazard, and the use of standard antimicrobial technology during the chicken processing of possible control strategies to overcome such problems.
Collapse
Affiliation(s)
- Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Ahmed M Saad
- Department of Biochemistry, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Tao Yang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Pharmacy, Hainan Medical University, Haikou, 571199, China
| | - Heba M Salem
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Sameh A Korma
- Department of Food Science, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Ahmed Ezzat Ahmed
- Biology Department, College of Science, King Khalid University, Abha, 61413, Saudi Arabia; Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, 61413, Saudi Arabia
| | - Walid F A Mosa
- Plant Production Department (Horticulture-Pomology), Faculty of Agriculture, Saba Basha, Alexandria University, Alexandria, 21531, Egypt
| | - Taia A Abd El-Mageed
- Department of Soils and Water, Faculty of Agriculture, Fayoum University, Fayoum, 63514, Egypt
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, 72388, Saudi Arabia
| | - Soad K Al Jaouni
- Department of Hematology/Oncology, Yousef Abdulatif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Rashed A Zaghloul
- Department Agricultural Microbiology, Faculty of Agriculture, Benha University, Moshtohor, Qaluybia, 13736, Egypt
| | - Mohamed E Abd El-Hack
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, 15551, United Arab Emirates.
| | - Salam A Ibrahim
- Food Microbiology and Biotechnology Laboratory, Carver Hall, College of Agriculture and Environmental Sciences, North Carolina A & T State University, Greensboro, NC, 27411-1064
| |
Collapse
|
4
|
Smith RP, Lawes J, Davies RH, Hutchison ML, Vidal A, Gilson D, Rodgers J. UK-wide risk factor study of broiler carcases highly contaminated with Campylobacter. Zoonoses Public Health 2023; 70:523-541. [PMID: 37337320 DOI: 10.1111/zph.13063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 04/04/2023] [Accepted: 05/22/2023] [Indexed: 06/21/2023]
Abstract
Campylobacter is a major cause of food poisoning and is typically the most common cause of gastroenteritis in the UK. Data collected at broiler farm and abattoir level, for slaughter batches that were sampled for UK-wide monitoring, were used to generate two epidemiological risk factor models. A total of 483 batches slaughtered between January 2016 and March 2017 were used in the analysis, coming from 19 abattoirs representing more than 85% of UK broiler production. For each selected slaughter batch, one carcase was sampled after primary chilling and 10 randomly sampled birds had caecal samples collected at the evisceration point. Samples were used for Campylobacter identification and quantification. Two multivariable mixed-effects models were designed, one with the binary outcome for the detection of a highly contaminated (>1000 colony forming units (CFU)/g) Campylobacter-positive carcase, whereas the other used the Campylobacter colony count (CFU/g) carcase outcome. The results suggest that caecal colonization within the batch was a key factor for the occurrence of Campylobacter on carcases, and many factors that were identified in the model were also likely to be related to colonization or related to the risk of introduction of Campylobacter from partial depopulation (referred to as thinning) of ~30% of the flock approximately 1 week before full flock depopulation events. The amount of neck skin in the sample was another key factor identified and was included in both models as a risk factor. The models have also identified other factors which may be related to the general health and husbandry on-farm (use of prebiotics or vaccines, and identification of the product used for drinking line cleaning), whereas the other factors may identify control points related to transmission within a farm. The identification of these variables could help focus control efforts on-farm, especially for relatively easy improvements, such as improving the provision of house-specific bird-weighing buckets/cages in houses.
Collapse
Affiliation(s)
- R P Smith
- Department of Epidemiological Sciences, Animal and Plant Health Agency - Weybridge, Surrey, UK
| | - J Lawes
- Department of Epidemiological Sciences, Animal and Plant Health Agency - Weybridge, Surrey, UK
| | - R H Davies
- Bacteriology Department, Animal and Plant Health Agency - Weybridge, Surrey, UK
| | | | - A Vidal
- Bacteriology Department, Animal and Plant Health Agency - Weybridge, Surrey, UK
- Surveillance and Regulatory Support Department, European Medicines Agency, Amsterdam, The Netherlands
| | - D Gilson
- Department of Epidemiological Sciences, Animal and Plant Health Agency - Weybridge, Surrey, UK
- Faculty of Biological Sciences, University of Leeds, West Yorkshire, UK
| | - J Rodgers
- Bacteriology Department, Animal and Plant Health Agency - Weybridge, Surrey, UK
| |
Collapse
|
5
|
Stewart J, Pavic A. Advances in enteropathogen control throughout the meat chicken production chain. Compr Rev Food Sci Food Saf 2023; 22:2346-2407. [PMID: 37038302 DOI: 10.1111/1541-4337.13149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 03/12/2023] [Accepted: 03/14/2023] [Indexed: 04/12/2023]
Abstract
Enteropathogens, namely Salmonella and Campylobacter, are a concern in global public health and have been attributed in numerous risk assessments to a poultry source. During the last decade, a large body of research addressing this problem has been published. The literature reviewed contains review articles on certain aspects of poultry production chain; however, in the past decade there has not been a review on the entire chain-farm to fork-of poultry production. For this review, a pool of 514 articles were selected for relevance via a systematic screening process (from >7500 original search articles). These studies identified a diversity of management and intervention strategies for the elimination or reduction of enteropathogens in poultry production. Many studies were laboratory or limited field trials with implementation in true commercial operations being problematic. Entities considering using commercial antienteropathogen products and interventions are advised to perform an internal validation and fit-for-purpose trial as Salmonella and Campylobacter serovars and biovars may have regional diversity. Future research should focus on nonchemical application within the processing plant and how a combination of synergisticinterventions through the production chain may contribute to reducing the overall carcass burden of enteropathogens, coupled with increased consumer education on safe handling and cooking of poultry.
Collapse
Affiliation(s)
- Jack Stewart
- Birling Laboratories Pty Ltd, Bringelly, New South Wales, Australia
| | - Anthony Pavic
- Birling Laboratories Pty Ltd, Bringelly, New South Wales, Australia
| |
Collapse
|
6
|
Longitudinal Changes in Campylobacter and the Litter Microbiome throughout the Broiler Production Cycle. Appl Environ Microbiol 2022; 88:e0066722. [PMID: 35943254 PMCID: PMC9469715 DOI: 10.1128/aem.00667-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Broiler chickens are an important source of Campylobacter to humans and become colonized on the farm, but the role of the litter in the ecology of Campylobacter is still not clear. The aim of this study was to examine the relationship between Campylobacter and the changes in the litter microbiome throughout the broiler production cycle. Twenty-six commercial broiler flocks representing two production types (small and big broilers) were followed from 1 to 2 weeks after placement to the end of the production cycle. Composite litter samples from the broiler chicken house were collected weekly. Litter DNA was extracted and used for Campylobacter jejuni and Campylobacter coli qPCR as well as for 16S rRNA gene V4 region sequencing. Campylobacter jejuni concentration in litter significantly differed by production type and flock age. Campylobacter jejuni concentration in litter from big broilers was 2.4 log10 units higher, on average, than that of small broilers at 3 weeks of age. Sixteen amplicon sequence variants (ASVs) differentially abundant over time were detected in both production types. A negative correlation of Campylobacter with Bogoriella and Pseudogracilibacillus was observed in the litter microbiome network at 6 weeks of flock age. Dynamic Bayesian networks provided evidence of negative associations between Campylobacter and two bacterial genera, Ornithinibacillus and Oceanobacillus, at 2 and 4 weeks of flock age, respectively. In conclusion, dynamic associations between Campylobacter and the litter microbiome were observed during grow-out, suggesting a potential role of the litter microbiome in the ecology of Campylobacter colonization and persistence on farm. IMPORTANCE This study interrogated the longitudinal association between Campylobacter and broiler litter microbiome in commercial broiler flocks. The results of this investigation highlighted differences in Campylobacter dynamics in the litter throughout the broiler production cycle and between small and big broilers. Besides documenting the changing nature of the microbial networks in broiler litter during grow-out, we detected bacterial genera (Oceanobacillus and Ornithinibacillus) negatively associated with Campylobacter abundance and concentration in litter via the Bayesian network framework. These bacteria should be investigated as possible antagonists to Campylobacter colonization of the broiler environment.
Collapse
|
7
|
Sarnino N, Berge AC, Chantziaras I, Dewulf J. Estimation of the Production Economic Consequences of Stopping Partial Depopulation in Broiler Production. Animals (Basel) 2022; 12:ani12121521. [PMID: 35739858 PMCID: PMC9219520 DOI: 10.3390/ani12121521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/30/2022] [Accepted: 06/09/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Partial depopulation is often used in broiler production to optimize the use of the farm space and rear a larger number of broilers. However, it may increase the risk for the introduction of Campylobacter spp. in the poultry house. A simulation was performed to evaluate the production consequences of a Belgian poultry house performing a 25% partial depopulation at 35 days of age compared with a scenario where the entire flock is slaughtered at 42 days of age. The result showed that stopping partial depopulation leads to a substantial production and profit decrease. To compensate the loss, it would be necessary an increase in meat price. Abstract Partial depopulation is the removal and slaughter of part of a flock prior to the final slaughter age, and this practice allows broiler producers to optimize stocking density in broiler houses. However, this practice constitutes a serious break in farm biosecurity that can lead to the introduction of various pathogens in the flock, including Campylobacter spp. In this study, the production of a house performing partial depopulation of 25% of the flock at 35 days of age prior to the final slaughter at 42 days was compared with a production system where partial depopulation was not performed. The differences in production costs, profit, and technical performance parameters were evaluated. The model indicated that stopping partial depopulation reduces the production between 16 to 24%, which results in a 14% reduced profit per kg of live weight, and a 31% reduced profit per production cycle. To compensate the profit loss, it would be necessary to increase the meat price 3% from a starting price of 87.44 cents. For current conventional broiler production, it may be financially challenging to stop partial depopulation practices. Focusing on external biosecurity to avoid the introduction of Campylobacter into poultry houses may be the right compromise.
Collapse
|
8
|
Greene G, Koolman L, Whyte P, Lynch H, Coffey A, Lucey B, Egan J, O’Connor L, Bolton D. Maximising Productivity and Eliminating Campylobacter in Broilers by Manipulating Stocking Density and Population Structure Using 'Biosecurity Cubes'. Pathogens 2021; 10:pathogens10040492. [PMID: 33921776 PMCID: PMC8073877 DOI: 10.3390/pathogens10040492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 03/31/2021] [Accepted: 04/11/2021] [Indexed: 11/29/2022] Open
Abstract
This study investigates the effect of stocking density and population dynamics on broiler growth rates and productivity, while further validating the ability of the biosecurity cubes (BC) to protect birds from Campylobacter. In our methodology, six BC were constructed in a commercial broiler house containing approximately 28,500 birds. During three trials, the BC were stocked at densities of 12, 14, 16, 18, 20 and 22 birds/m2, with the main flock (20 birds/m2) considered the control. Periodically, 10 birds per density were weighed and examined. The Campylobacter status of the birds was monitored via faecal samples using the ISO 10272: 2017. The stocking density for maximum calculated yield was 20 (trials 1 and 2) or 22 birds/m2 (trial 3), followed by 18, 16, 14 and 12. At the stocking rate of 20 birds/m2, the birds in the pen grew faster than those at the same density in the main flock achieving 2 Kg 3–6 days faster. Birds in the BC were observed to be generally healthier, and in some cases, remained Campylobacter negative, even after the main flock was infected. Our results conclude that dividing the flock into sub-flocks of approximately 20 birds/m2 using BC could increase productivity up to 20%, while preventing Campylobacter.
Collapse
Affiliation(s)
- Genevieve Greene
- Teagasc Food Research Centre, Ashtown, 15 Dublin, Ireland; (G.G.); (L.K.)
- School of Veterinary Medicine, University College Dublin, Belfield, 4 Dublin, Ireland; (P.W.); (H.L.); (J.E.)
| | - Leonard Koolman
- Teagasc Food Research Centre, Ashtown, 15 Dublin, Ireland; (G.G.); (L.K.)
| | - Paul Whyte
- School of Veterinary Medicine, University College Dublin, Belfield, 4 Dublin, Ireland; (P.W.); (H.L.); (J.E.)
| | - Helen Lynch
- School of Veterinary Medicine, University College Dublin, Belfield, 4 Dublin, Ireland; (P.W.); (H.L.); (J.E.)
- Department of Agriculture, Food and the Marine, Backweston, Celbridge, W23 X3PH Kildare, Ireland
| | - Aidan Coffey
- Department of Biological Sciences, Munster Technological University, T12 T66T Cork, Ireland; (A.C.); (B.L.)
| | - Brigid Lucey
- Department of Biological Sciences, Munster Technological University, T12 T66T Cork, Ireland; (A.C.); (B.L.)
| | - John Egan
- School of Veterinary Medicine, University College Dublin, Belfield, 4 Dublin, Ireland; (P.W.); (H.L.); (J.E.)
| | - Lisa O’Connor
- Food Safety Authority of Ireland, George’s Dock, 1 Dublin, Ireland;
| | - Declan Bolton
- Teagasc Food Research Centre, Ashtown, 15 Dublin, Ireland; (G.G.); (L.K.)
- Correspondence: ; Tel.: +353-1-805-9539
| |
Collapse
|
9
|
A One Health Perspective on a Multi-hurdle Approach to Combat Campylobacter spp. in Broiler Meat. CURRENT CLINICAL MICROBIOLOGY REPORTS 2021. [DOI: 10.1007/s40588-021-00167-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
10
|
The effect of partial depopulation on Campylobacter introduction in broiler houses. Poult Sci 2020; 100:1076-1082. [PMID: 33518066 PMCID: PMC7858079 DOI: 10.1016/j.psj.2020.11.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 11/04/2020] [Accepted: 11/09/2020] [Indexed: 12/01/2022] Open
Abstract
Poultry is seen as the main reservoir for Campylobacter. Control of this zoonotic pathogen in primary production could potentially reduce the colonization in broiler flocks and consequently reduce the number of human infections. In the present study, 20 broiler flocks from 10 farms, were sampled immediately before and 5 to 7 d after partial depopulation (thinning) for the presence of Campylobacter using cecal droppings and overshoes. At the time of thinning, the catching crew, transportation vehicles, forklift, and transport containers were sampled for the presence of Campylobacter. Samples were cultivated; presumed positive isolates were confirmed by PCR. The isolates were molecularly typed by flaA restriction analysis and pulsed field gel electrophoresis. Results show that all flocks were thinned using Campylobacter-contaminated equipment and materials. One-third of the broiler flocks became colonized after thinning. In 67% of the colonization cases, identical strains were found matching those of container systems, transport trucks, and/or forklifts. This identifies thinning as an important risk factor for Campylobacter introduction into broiler houses. Setup and compliance with biosecurity practices during thinning is essential to prevent Campylobacter colonization of broiler flocks.
Collapse
|
11
|
Koutsoumanis K, Allende A, Alvarez‐Ordóñez A, Bolton D, Bover‐Cid S, Davies R, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Peixe L, Ru G, Simmons M, Skandamis P, Suffredini E, Alter T, Crotta M, Ellis‐Iversen J, Hempen M, Messens W, Chemaly M. Update and review of control options for Campylobacter in broilers at primary production. EFSA J 2020; 18:e06090. [PMID: 32874298 PMCID: PMC7448041 DOI: 10.2903/j.efsa.2020.6090] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The 2011 EFSA opinion on Campylobacter was updated using more recent scientific data. The relative risk reduction in EU human campylobacteriosis attributable to broiler meat was estimated for on-farm control options using Population Attributable Fractions (PAF) for interventions that reduce Campylobacter flock prevalence, updating the modelling approach for interventions that reduce caecal concentrations and reviewing scientific literature. According to the PAF analyses calculated for six control options, the mean relative risk reductions that could be achieved by adoption of each of these six control options individually are estimated to be substantial but the width of the confidence intervals of all control options indicates a high degree of uncertainty in the specific risk reduction potentials. The updated model resulted in lower estimates of impact than the model used in the previous opinion. A 3-log10 reduction in broiler caecal concentrations was estimated to reduce the relative EU risk of human campylobacteriosis attributable to broiler meat by 58% compared to an estimate larger than 90% in the previous opinion. Expert Knowledge Elicitation was used to rank control options, for weighting and integrating different evidence streams and assess uncertainties. Medians of the relative risk reductions of selected control options had largely overlapping probability intervals, so the rank order was uncertain: vaccination 27% (90% probability interval (PI) 4-74%); feed and water additives 24% (90% PI 4-60%); discontinued thinning 18% (90% PI 5-65%); employing few and well-trained staff 16% (90% PI 5-45%); avoiding drinkers that allow standing water 15% (90% PI 4-53%); addition of disinfectants to drinking water 14% (90% PI 3-36%); hygienic anterooms 12% (90% PI 3-50%); designated tools per broiler house 7% (90% PI 1-18%). It is not possible to quantify the effects of combined control activities because the evidence-derived estimates are inter-dependent and there is a high level of uncertainty associated with each.
Collapse
|
12
|
Skelhorn EPG, Garcia-Ara A, Nova RJ, Kinston H, Wapenaar W. Public opinion and perception of rosé veal in the UK. Meat Sci 2019; 167:108032. [PMID: 32408233 DOI: 10.1016/j.meatsci.2019.108032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 12/09/2019] [Indexed: 01/06/2023]
Abstract
Rosé veal is understood as meat from male purebred dairy calves. The UK veal market is limited, and calves are often killed at birth due to lack of purpose. A questionnaire, completed by 1002 respondents, investigated the UK public knowledge, perceptions and opinions of rosé veal, and whether raising awareness would sustain the rosé veal market. Most respondents (66%) did not eat rosé veal, mainly due to limited availability or exposure (31%) and animal welfare concerns (17%). A third of respondents knew the differences between rosé and white veal. After defining this, 61% of respondents would eat rosé veal, compared to 23% of respondents who ate it beforehand. Most respondents (91%) were willing to pay more for rosé veal burgers than the proposed average price for beef burgers. Increasing availability is key to encourage the sustainability of rosé veal production in the UK. These findings are useful for dairy farmers to strategically promote the use of purebred dairy bull calves.
Collapse
Affiliation(s)
- E P G Skelhorn
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Leicestershire LE12 5RD, United Kingdom.
| | - A Garcia-Ara
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Leicestershire LE12 5RD, United Kingdom.
| | - R J Nova
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Leicestershire LE12 5RD, United Kingdom.
| | - H Kinston
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Leicestershire LE12 5RD, United Kingdom
| | - W Wapenaar
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Leicestershire LE12 5RD, United Kingdom.
| |
Collapse
|
13
|
Koutsoumanis K, Allende A, Alvarez-Ordóñez A, Bolton D, Bover-Cid S, Chemaly M, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Peixe L, Ru G, Simmons M, Skandamis P, Suffredini E, Dewulf J, Hald T, Michel V, Niskanen T, Ricci A, Snary E, Boelaert F, Messens W, Davies R. Salmonella control in poultry flocks and its public health impact. EFSA J 2019; 17:e05596. [PMID: 32626222 PMCID: PMC7009056 DOI: 10.2903/j.efsa.2019.5596] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
An increase in confirmed human salmonellosis cases in the EU after 2014 triggered investigation of contributory factors and control options in poultry production. Reconsideration of the five current target serovars for breeding hens showed that there is justification for retaining Salmonella Enteritidis, Salmonella Typhimurium (including monophasic variants) and Salmonella Infantis, while Salmonella Virchow and Salmonella Hadar could be replaced by Salmonella Kentucky and either Salmonella Heidelberg, Salmonella Thompson or a variable serovar in national prevalence targets. However, a target that incorporates all serovars is expected to be more effective as the most relevant serovars in breeding flocks vary between Member State (MS) and over time. Achievement of a 1% target for the current target serovars in laying hen flocks is estimated to be reduced by 254,400 CrI95[98,540; 602,700] compared to the situation in 2016. This translates to a reduction of 53.4% CrI95[39.1; 65.7] considering the layer-associated human salmonellosis true cases and 6.2% considering the overall human salmonellosis true cases in the 23 MSs included in attribution modelling. A review of risk factors for Salmonella in laying hens revealed that overall evidence points to a lower occurrence in non-cage compared to cage systems. A conclusion on the effect of outdoor access or impact of the shift from conventional to enriched cages could not be reached. A similar review for broiler chickens concluded that the evidence that outdoor access affects the occurrence of Salmonella is inconclusive. There is conclusive evidence that an increased stocking density, larger farms and stress result in increased occurrence, persistence and spread of Salmonella in laying hen flocks. Based on scientific evidence, an impact of Salmonella control programmes, apart from general hygiene procedures, on the prevalence of Campylobacter in broiler flocks at the holding and on broiler meat at the end of the slaughter process is not expected.
Collapse
|