1
|
Antrobus MR, Desai T, Young D, Machado L, Ribbans WJ, El Khoury LY, Brazier J. Epigenetics of concussion: A systematic review. Gene 2025; 935:149046. [PMID: 39490707 DOI: 10.1016/j.gene.2024.149046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/14/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND Concussion is the most common neurological disorder affecting millions of people globally each year. Identifying epigenetic mechanisms influencing concussion incidence, severity and recovery could provide diagnostic and prognostic insight into this injury. OBJECTIVES This systematic review aims to identify the epigenetic mechanisms underpinning concussion. METHODS Seven electronic databases; PubMed, MEDLINE, CINAHL, Cochrane library, SPORTDiscus, Scopus and Web of Science were searched for studies that investigated the epigenetic mechanisms of concussion and its underlying neuropathology. RESULTS Based on inclusion and exclusion criteria, 772 titles were independently analysed by two of the authors to a final list of 28 studies that totaled 3042 participants. We observed separate associations between sncRNAs, methylation, histone modification and concussion. Overall, 204 small non-coding RNAs were significantly dysregulated between concussed participants and controls or between concussion participants with no post-concussive symptoms and those with post-concussive symptoms. From these, 37 were reported in more than one study and 23 of these were expressed in a consistent direction with at least one further study. Ingenuity pathway analysis identified 10 miRNAs known to regulate 15 genes associated with human neurological pathologies. Two studies found significant changes in global methylation in concussed participants and one study found a decrease in H3K27Me3 in the context of DNA damage and concussion. CONCLUSIONS The review findings suggest that epigenetic mechanisms may play an important role in the pathophysiological mechanisms that could influence outcome, recovery, and potential long-term consequences of concussion for individuals.
Collapse
Affiliation(s)
- Mark R Antrobus
- Centre for Physical Activity and Life Sciences, University of Northampton, Northampton NN1 5PH, UK.
| | - Terun Desai
- Institute of Sport, Exercise & Health, Division of Surgery & Interventional Science, University College London, W1T 7HA, UK
| | - David Young
- Centre for Physical Activity and Life Sciences, University of Northampton, Northampton NN1 5PH, UK
| | - Lee Machado
- Centre for Physical Activity and Life Sciences, University of Northampton, Northampton NN1 5PH, UK
| | - William J Ribbans
- Centre for Physical Activity and Life Sciences, University of Northampton, Northampton NN1 5PH, UK
| | - Louis Y El Khoury
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jon Brazier
- Department of Psychology, Geography and Sport, University of Hertfordshire, Hatfield AL10 9AB, UK
| |
Collapse
|
2
|
Heileson JL, Macartney MJ, Watson NL, Sergi TE, Jagim AR, Anthony R, Peoples GE. Nutritional Optimization for Brain Health in Contact Sports: A Systematic Review and Meta-Analysis on Long-Chain ω-3 Fatty Acids and Neurofilament Light. Curr Dev Nutr 2024; 8:104454. [PMID: 39429508 PMCID: PMC11489149 DOI: 10.1016/j.cdnut.2024.104454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 10/22/2024] Open
Abstract
Background Accumulating evidence has highlighted the acute and chronic impact of repetitive subconcussive head impacts (rSHIs) in contact sports. Neurofilament-light (Nf-L), a brain-derived biomarker of neuroaxonal injury, elevates in concert with rSHI. Recently, long-chain ω-3 polyunsaturated fatty acids (LC ω-3 PUFAs) supplementation has been suggested to mitigate brain injury from rSHI as reflected by attenuation of Nf-L concentrations within contact sport athletes. Objective Using a systematic review with a meta-analysis, we aimed to determine the effect of LC ω-3 PUFA supplementation on Nf-L concentrations in athletes routinely exposed to rSHI. Methods Electronic databases (PubMed and CINAHL) were searched from inception through January 2024. One-stage meta-analysis of individual participant-level data was used to detect changes in Nf-L concentrations between LC ω-3 PUFA and control/placebo (PL) groups from baseline to midseason (MS) and postseason (PS). Least square means (±SE) for Nf-L change from baseline were compared by treatment group for MS/PS using contrast t tests. Significance was set a priori at adjusted P ≤ 0.05. Results Of 460 records identified, 3 studies in collegiate American football players (n = 179; LC ω-3 PUFA = 105, PL = 71) were included in the meta-analysis. Compared with PL, the change in Nf-L concentrations was statistically similar at MS [mean difference (MD) = -1.66 ± 0.82 pg·mL-1, adjusted P = 0.09] and significantly lower at PS (MD = -2.23 ± 0.83 pg·mL-1, adjusted P = 0.02) in athletes following LC ω-3 PUFA supplementation. Conclusions Our findings demonstrate preliminary support for the prophylactic administration of LC ω-3 PUFA in contact sport athletes exposed to rSHI; however, further research is required to determine the effective dosage required.This trial was registered at OSF (DOI: https://doi.org/10.17605/OSF.IO/EY5QW).
Collapse
Affiliation(s)
- Jeffery L Heileson
- Walter Reed National Medical Center, Bethesda, MD, United States
- Department of Health, Human Performance, and Recreation, Baylor University, Waco, TX, United States
| | - Michael J Macartney
- Graduate School of Medicine, University of Wollongong, Wollongong, NSW, Australia
| | - Nora L Watson
- Walter Reed National Medical Center, Bethesda, MD, United States
| | - Tina E Sergi
- Walter Reed National Medical Center, Bethesda, MD, United States
| | - Andrew R Jagim
- Department of Exercise and Sport Science, University of Wisconsin-La Crosse, La Crosse, WI, United States
- Department of Sports Medicine, Mayo Clinic Health System, La Crosse, WI, United States
| | - Ryan Anthony
- Graduate School of Medicine, University of Wollongong, Wollongong, NSW, Australia
| | - Gregory E Peoples
- Graduate School of Medicine, University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
3
|
Johnson PK, Fino PC, Wilde EA, Hovenden ES, Russell HA, Velez C, Pelo R, Morris AJ, Kreter N, Read EN, Keleher F, Esopenko C, Lindsey HM, Newsome MR, Thayn D, McCabe C, Mullen CM, Davidson LE, Liebel SW, Carr L, Tate DF. The Effect of Intranasal Plus Transcranial Photobiomodulation on Neuromuscular Control in Individuals with Repetitive Head Acceleration Events. Photobiomodul Photomed Laser Surg 2024; 42:404-413. [PMID: 38848287 PMCID: PMC11587703 DOI: 10.1089/pho.2023.0178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/20/2024] [Indexed: 06/09/2024] Open
Abstract
Objective: This proof-of-concept study was to investigate the relationship between photobiomodulation (PBM) and neuromuscular control. Background: The effects of concussion and repetitive head acceleration events (RHAEs) are associated with decreased motor control and balance. Simultaneous intranasal and transcranial PBM (itPBM) is emerging as a possible treatment for cognitive and psychological sequelae of brain injury with evidence of remote effects on other body systems. Methods: In total, 43 (39 male) participants, age 18-69 years (mean, 49.5; SD, 14.45), with a self-reported history of concussive and/or RHAE and complaints of their related effects (e.g., mood dysregulation, impaired cognition, and poor sleep quality), completed baseline and posttreatment motor assessments including clinical reaction time, grip strength, grooved pegboard, and the Mini Balance Evaluation Systems Test (MiniBEST). In the 8-week interim, participants self-administered itPBM treatments by wearing a headset comprising four near-infrared light-emitting diodes (LED) and a near-infrared LED nasal clip. Results: Posttreatment group averages in reaction time, MiniBEST reactive control subscores, and bilateral grip strength significantly improved with effect sizes of g = 0.75, g = 0.63, g = 0.22 (dominant hand), and g = 0.34 (nondominant hand), respectively. Conclusion: This study provides a framework for more robust studies and suggests that itPBM may serve as a noninvasive solution for improved neuromuscular health.
Collapse
Affiliation(s)
- Paula K. Johnson
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, Utah, USA
- George E. Wahlen VA Medical Center, Salt Lake City, Utah, USA
- Office of Research, Rocky Mountain University of Health Professions, Provo, Utah, USA
| | - Peter C. Fino
- Department of Health and Kinesiology, University of Utah, Salt Lake City, Utah, USA
| | - Elisabeth A. Wilde
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, Utah, USA
- George E. Wahlen VA Medical Center, Salt Lake City, Utah, USA
| | - Elizabeth S. Hovenden
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, Utah, USA
- George E. Wahlen VA Medical Center, Salt Lake City, Utah, USA
| | - Hilary A. Russell
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, Utah, USA
- George E. Wahlen VA Medical Center, Salt Lake City, Utah, USA
| | - Carmen Velez
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, Utah, USA
- George E. Wahlen VA Medical Center, Salt Lake City, Utah, USA
| | - Ryan Pelo
- Department of Physical Therapy & Athletic Training, University of Utah, Salt Lake City, Utah, USA
| | - Amanda J. Morris
- Department of Kinesiology, Sacramento State University, Sacramento, California, USA
| | - Nicholas Kreter
- Department of Health and Kinesiology, University of Utah, Salt Lake City, Utah, USA
| | - Emma N. Read
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, Utah, USA
- George E. Wahlen VA Medical Center, Salt Lake City, Utah, USA
| | - Finian Keleher
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, Utah, USA
- George E. Wahlen VA Medical Center, Salt Lake City, Utah, USA
| | - Carrie Esopenko
- Department of Rehabilitation & Human Performance, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Hannah M. Lindsey
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, Utah, USA
- George E. Wahlen VA Medical Center, Salt Lake City, Utah, USA
| | - Mary R. Newsome
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, Utah, USA
- George E. Wahlen VA Medical Center, Salt Lake City, Utah, USA
- H. Ben Taub Department of Physical Medicine & Rehabilitation, Baylor College of Medicine, Houston, Texas, USA
| | - Dayna Thayn
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, Utah, USA
- George E. Wahlen VA Medical Center, Salt Lake City, Utah, USA
| | - Courtney McCabe
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, Utah, USA
- George E. Wahlen VA Medical Center, Salt Lake City, Utah, USA
| | - Christine M. Mullen
- Department of Physical Medicine and Rehabilitation, University of Utah, Salt Lake City, Utah, USA
| | - Lance E. Davidson
- Department of Exercise Sciences, Brigham Young University, Provo, Utah, USA
| | - Spencer W. Liebel
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, Utah, USA
- George E. Wahlen VA Medical Center, Salt Lake City, Utah, USA
| | - Lawrence Carr
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - David F. Tate
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, Utah, USA
- George E. Wahlen VA Medical Center, Salt Lake City, Utah, USA
| |
Collapse
|
4
|
Carbuhn AF, D'Silva LJ. Red blood cell omega-3 fatty acid content is negatively associated with purposeful gameplay header frequencies in collegiate women soccer players: Implications for diet and brain health. Nutr Health 2024; 30:27-33. [PMID: 37248567 DOI: 10.1177/02601060231178333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Background: Frequent soccer heading negatively affects brain health. Omega-3 fatty acids are neuroprotective against head impacts. A biomarker of omega-3 tissue status, red blood cell (RBC) omega-3 content is reduced during soccer activity. However, whether these changes are associated with frequent heading impacts is unknown. Aim: Explore the association between soccer heading frequencies and RBC omega-3 status. Methods: A prospective cohort study in collegiate women soccer players (n = 16). Players' RBC omega-3 status, Omega-3 Index, and self-reported gameplay header frequencies collected during a competitive season. Results: Mean Omega-3 Index (i.e., pre/postseason) was low (3.95 ± 0.44%). Postseason Omega-3 Index negatively correlated (r = -0.545, p = 0.029) with heading frequencies. Change in Omega-3 Index negatively correlated (r = -0.663, p = 0.005) with average headers per game. Conclusion: RBC omega-3 status is negatively influenced by frequent soccer heading throughout a competitive season which may have concerning implications for player brain health.
Collapse
Affiliation(s)
- Aaron F Carbuhn
- Department of Dietetics and Nutrition, University of Kansas Medical Center, Kansas City, KS, USA
| | - Linda J D'Silva
- Department of Physical Therapy, Rehabilitation Science, and Athletic Training, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
5
|
Finnegan E, Daly E, Ryan L. Nutritional Considerations of Irish Performance Dietitians and Nutritionists in Concussion Injury Management. Nutrients 2024; 16:497. [PMID: 38398823 PMCID: PMC10891776 DOI: 10.3390/nu16040497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/29/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
Sport-related concussion incidence has increased in many team-based sports, such as rugby, Gaelic (camogie, hurling, football), and hockey. Concussion disrupts athletes' brain function, causing an "energy crisis" that requires energy and nutrient support to restore function and heal. Performance dietitians and nutritionists play a role in supporting athletes' post-injury nutritional demands. This study aimed to investigate Irish performance dietitians' and nutritionists' knowledge and implementation of nutritional strategies to manage and support athletes' recovery following concussion. In-depth, semi-structured interviews were conducted with seventeen (n = 17) Irish performance dietitians and nutritionists recruited from the Sport and Exercise Nutrition register and other sporting body networks across Ireland. Participants practised or had practised with amateur and/or professional athletes within the last ten years. All interviews and their transcripts were thematically analysed to extract relevant insights. These data provided valuable insights revealing performance dietitians and nutritionists: (1) their awareness of concussion events and (2) their use of nutritional supports for concussion management. Furthermore, the research highlighted their implementation of 'novel nutritional protocols' specifically designed to support and manage athletes' concussion recovery. There was a clear contrast between participants who had an awareness and knowledge of the importance of nutrition for brain recovery after sport-related concussion(s) and those who did not. Participants presenting with a practical understanding mentioned re-emphasising certain foods and supplements they were already recommending to athletes in the event of a concussion. Performance dietitians and nutritionists were keeping up to date with nutrition research on concussions, but limited evidence has prevented them from implementing protocols in practice. Meanwhile, participants mentioned trialling/recommending nutritional protocols, such as carbohydrate reloading, reducing omega-6 intake, and acutely supplementing creatine, omega-3 fish oils high in Docosahexaenoic acid, and probiotics to support brain healing. Performance dietitians' and nutritionists' use of nutrition protocols with athletes following concussion was linked to their knowledge and the limited scientific evidence available. Nutrition implementation, therefore, may be overlooked or implemented with uncertainty, which could negatively affect athletes' recovery following sports-related concussions.
Collapse
Affiliation(s)
| | | | - Lisa Ryan
- Department of Sport, Exercise and Nutrition, Atlantic Technological University (ATU), H91 T8NW Galway, Ireland; (E.F.); (E.D.)
| |
Collapse
|
6
|
Tomczyk M, Heileson JL, Babiarz M, Calder PC. Athletes Can Benefit from Increased Intake of EPA and DHA-Evaluating the Evidence. Nutrients 2023; 15:4925. [PMID: 38068783 PMCID: PMC10708277 DOI: 10.3390/nu15234925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Fatty fish, which include mackerel, herring, salmon and sardines, and certain species of algae (e.g., Schizochytrium sp., Crytthecodiniumcohnii and Phaeodactylumtricornutum) are the only naturally rich sources of the omega-3 polyunsaturated fatty acids (n-3 PUFAs) eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). EPA and DHA are the most biologically active members of the n-3 PUFA family. Limited dietary sources and fluctuating content of EPA and DHA in fish raise concerns about the status of EPA and DHA among athletes, as confirmed in a number of studies. The beneficial effects of EPA and DHA include controlling inflammation, supporting nervous system function, maintaining muscle mass after injury and improving training adaptation. Due to their inadequate intake and beneficial health-promoting effects, athletes might wish to consider using supplements that provide EPA and DHA. Here, we provide an overview of the effects of EPA and DHA that are relevant to athletes and discuss the pros and cons of supplements as a source of EPA and DHA for athletes.
Collapse
Affiliation(s)
- Maja Tomczyk
- Department of Biochemistry, Gdansk University of Physical Education and Sport, 80-336 Gdansk, Poland
| | - Jeffery L. Heileson
- Department of Health, Human Performance, and Recreation, Baylor University, Waco, TX 76706, USA
- Nutrition Services Department, Walter Reed National Military Medical Center, Bethesda, MD 20814, USA
| | - Mirosław Babiarz
- Department of Physiology, Gdansk University of Physical Education and Sport, 80-336 Gdansk, Poland;
| | - Philip C. Calder
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK;
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton SO16 6YD, UK
| |
Collapse
|
7
|
LUST CODYAC, BURNS JESSIEL, JONES MARGARETT, SMITH STEPHENB, CHOI SEONGHO, KRK MICHELE, GABLE DAVIDA, OLIVER JONATHANM, MA DAVIDWL. The Dose-Response Effect of Docosahexaenoic Acid on the Omega-3 Index in American Football Athletes. Med Sci Sports Exerc 2023; 55:865-872. [PMID: 36728325 PMCID: PMC10090382 DOI: 10.1249/mss.0000000000003117] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE American-style football (ASF) players are at increased risk for head injuries and cardiovascular disease. n-3 polyunsaturated fatty acids are cardioprotective, and emerging evidence suggests benefits for protection against head injuries. However, fundamental knowledge of n-3 polyunsaturated fatty acid dosing in athletes such as ASF players remains poorly understood. Therefore, this study investigated the dose-response effect of docosahexaenoic acid (DHA) supplementation in red blood cells (RBC) and as the Omega-3 Index (O3I), in collegiate ASF players throughout a competitive season. METHODS Sixty-nine ASF players were randomly assigned placebo (corn oil), or 2, 4, or 6 g·d -1 of DHA supplement. Blood samples were collected at eight time points (T1-T8) over 27 wk. RBC were extracted and analyzed by gas-liquid chromatography. Compliant players who had samples collected at all time points were analyzed. A repeated-measures ANOVA was conducted to assess the dose-response effect of DHA over time, and between-group differences at individual time points were assessed by one-way ANOVA followed by Tukey post hoc test. RESULTS A significant dose and time interaction was found, and all supplement groups had significantly greater DHA in RBC compared with placebo from T2-T8 ( P < 0.05). Athletes receiving 6 g·d -1 of DHA had the greatest O3I, relative to other groups, and the O3I reached steady state by 15 wk. The 6 g·d -1 group surpassed >8% on the O3I at approximately twice the rate of the 4 g·d -1 group (8 vs 15 wk). CONCLUSIONS Our findings provide important fundamental knowledge demonstrating a dose-response incorporation of DHA into RBC membranes up to 6 g·d -1 . Furthermore, 6 g·d -1 of DHA can be used to rapidly achieve a desired O3I (>8%) in athletes in only 8 wk.
Collapse
Affiliation(s)
- CODY A. C. LUST
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, CANADA
| | - JESSIE L. BURNS
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, CANADA
| | - MARGARET T. JONES
- Sport, Recreation, and Tourism Management, George Mason University, Fairfax, VA
| | - STEPHEN B. SMITH
- Department of Animal Science, Texas A&M University, College Station, TX
| | - SEONG HO CHOI
- Department of Animal Science, Texas A&M University, College Station, TX
| | - MICHELE KRK
- Texas Christian University Athletics, Texas Christian University, Fort Worth, TX
| | - DAVID A. GABLE
- Texas Christian University Athletics, Texas Christian University, Fort Worth, TX
| | - JONATHAN M. OLIVER
- Texas Christian University Athletics, Texas Christian University, Fort Worth, TX
| | - DAVID W. L. MA
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, CANADA
| |
Collapse
|
8
|
Heileson JL, Elliott A, Buzzard JA, Cholewinski MC, Jackson KH, Gallucci A, Funderburk LK. A Cross-Sectional Analysis of Whole Blood Long-Chain ω-3 Polyunsaturated Fatty Acids and Its Relationship with Dietary Intake, Body Composition, and Measures of Strength and Power in Collegiate Athletes. JOURNAL OF THE AMERICAN NUTRITION ASSOCIATION 2023; 42:94-100. [PMID: 34898402 DOI: 10.1080/07315724.2021.1995910] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
ObjectiveLong-chain omega-3 polyunsaturated fatty acids (LC ω-3 PUFAs), eicosapentaenoic (EPA) and docosahexaenoic acid (DHA), have received widespread interest from the athletic community for their potential roles in physical performance and recovery. The purpose of this cross-sectional analysis was to evaluate the dietary intake and whole blood ω-3 PUFAs and their relationship with body composition, strength, and power in collegiate athletes.MethodThirty-six athletes completed a dual energy x-ray absorptiometry scan for body composition analysis (n = 35), ω-3 PUFAs food frequency questionnaire (n = 27), provided dried blood spot samples (n = 30) to quantify the Omega-3 Index (O3I) and total ω-3 PUFAs content, handgrip strength (n = 17), and countermovement jump (n = 26) testing.ResultsThe mean daily intake of LC ω-3 PUFAs and O3I was 140 mg and 4.6% ± 0.96, respectively, for all athletes. Dietary LC ω-3 PUFAs were positively correlated with the O3I (r = 0.635, p < .01), whole blood EPA (r = 0.778, p < .01), and DHA (r = 0.515, p < .01). Dietary LC ω-3 PUFA intake, whole blood EPA (%), and the EPA:AA ratio was positively associated with HGS (p < .05). Dietary or blood LC ω-3 PUFAs were not correlated with any other measures.Conclusions:Collegiate athletes consume low amounts of LC ω-3 PUFAs and have sub-optimal O3I status. Sports dietitians should encourage the intake of fatty fish and educate athletes about ω-3 PUFAs potential role on performance- and recovery-based outcomes.
Collapse
Affiliation(s)
- Jeffery L Heileson
- Health, Human Performance and Recreation, Baylor University, Waco, Texas, USA
| | - Ashlyne Elliott
- Department of Veterans Affairs, Veterans Health Administration, Houston, Texas, USA
| | | | | | | | - Andrew Gallucci
- Health, Human Performance and Recreation, Baylor University, Waco, Texas, USA
| | - LesLee K Funderburk
- Health, Human Performance and Recreation, Baylor University, Waco, Texas, USA.,Human Sciences and Design, Baylor University, Waco, Texas, USA
| |
Collapse
|
9
|
Tollefson S, Himes ML, Kozinski KM, Lopresti BJ, Mason NS, Hibbeln J, Muldoon MF, Narendran R. Imaging the Influence of Red Blood Cell Docosahexaenoic Acid Status on the Expression of the 18 kDa Translocator Protein in the Brain: A [ 11C]PBR28 Positron Emission Tomography Study in Young Healthy Men. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2022; 7:998-1006. [PMID: 34607054 DOI: 10.1016/j.bpsc.2021.09.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 09/09/2021] [Accepted: 09/18/2021] [Indexed: 01/11/2023]
Abstract
BACKGROUND Docosahexaenoic acid (DHA) shows anti-inflammatory/proresolution effects in the brain. Higher red blood cell (RBC) DHA in humans is associated with improved cognitive performance and a lower risk for suicide. Here, we hypothesized that binding to the 18 kDa translocator protein (TSPO), a proxy for microglia levels, will be higher in individuals with low DHA relative to high DHA levels. We also postulated that higher TSPO would predict poor cognitive performance and impaired stress resilience. METHODS RBC DHA screening was performed in 320 healthy males. [11C]PBR28 positron emission tomography was used to measure binding to TSPO in 38 and 32 males in the lowest and highest RBC DHA quartiles. Volumes of distribution expressed relative to total plasma ligand concentration (VT) was derived using an arterial input function-based kinetic analysis in 14 brain regions. RESULTS [11C]PBR28 VT was significantly lower (by 12% and 20% in C/T and C/C rs6971 genotypes) in males with low RBC DHA than in males with high RBC DHA. Regional VT was correlated positively and negatively with RBC DHA and serum triglycerides, respectively. No relationships between VT and cognitive performance or stress resilience measures were present. CONCLUSIONS Contrary to our hypothesis, we found lower TSPO binding in low-DHA than in high-DHA subjects. It is unclear as to whether low TSPO binding reflects differences in microglia levels and/or triglyceride metabolism in this study. Future studies with specific targets are necessary to confirm the effect of DHA on microglia. These results underscore the need to consider lipid parameters as a factor when interpreting TSPO positron emission tomography clinical findings.
Collapse
Affiliation(s)
- Savannah Tollefson
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Michael L Himes
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Katelyn M Kozinski
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Brian J Lopresti
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - N Scott Mason
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Joseph Hibbeln
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Matthew F Muldoon
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Rajesh Narendran
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| |
Collapse
|
10
|
Krizman J, Bonacina S, Colegrove D, Otto-Meyer R, Nicol T, Kraus N. Athleticism and sex impact neural processing of sound. Sci Rep 2022; 12:15181. [PMID: 36071146 PMCID: PMC9452578 DOI: 10.1038/s41598-022-19216-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 08/25/2022] [Indexed: 11/08/2022] Open
Abstract
Biology and experience both influence the auditory brain. Sex is one biological factor with pervasive effects on auditory processing. Females process sounds faster and more robustly than males. These differences are linked to hormone differences between the sexes. Athleticism is an experiential factor known to reduce ongoing neural noise, but whether it influences how sounds are processed by the brain is unknown. Furthermore, it is unknown whether sports participation influences auditory processing differently in males and females, given the well-documented sex differences in auditory processing seen in the general population. We hypothesized that athleticism enhances auditory processing and that these enhancements are greater in females. To test these hypotheses, we measured auditory processing in collegiate Division I male and female student-athletes and their non-athlete peers (total n = 1012) using the frequency-following response (FFR). The FFR is a neurophysiological response to sound that reflects the processing of discrete sound features. We measured across-trial consistency of the response in addition to fundamental frequency (F0) and harmonic encoding. We found that athletes had enhanced encoding of the harmonics, which was greatest in the female athletes, and that athletes had more consistent responses than non-athletes. In contrast, F0 encoding was reduced in athletes. The harmonic-encoding advantage in female athletes aligns with previous work linking harmonic encoding strength to female hormone levels and studies showing estrogen as mediating athlete sex differences in other sensory domains. Lastly, persistent deficits in auditory processing from previous concussive and repetitive subconcussive head trauma may underlie the reduced F0 encoding in athletes, as poor F0 encoding is a hallmark of concussion injury.
Collapse
Affiliation(s)
- Jennifer Krizman
- Auditory Neuroscience Laboratory
- Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, 60208, USA
| | - Silvia Bonacina
- Auditory Neuroscience Laboratory
- Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, 60208, USA
| | - Danielle Colegrove
- Department of Sports Medicine, Northwestern Medicine, Chicago, IL, 60611, USA
| | - Rembrandt Otto-Meyer
- Auditory Neuroscience Laboratory
- Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, 60208, USA
| | - Trent Nicol
- Auditory Neuroscience Laboratory
- Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, 60208, USA
| | - Nina Kraus
- Auditory Neuroscience Laboratory, .
- Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, 60208, USA.
- Department of Neurobiology, Northwestern University, Evanston, IL, 60208, USA.
- Department of Otolaryngology, Northwestern University, Chicago, IL, 60611, USA.
| |
Collapse
|
11
|
Mullins VA, Graham S, Cummings D, Wood A, Ovando V, Skulas-Ray AC, Polian D, Wang Y, Hernandez GD, Lopez CM, Raikes AC, Brinton RD, Chilton FH. Effects of Fish Oil on Biomarkers of Axonal Injury and Inflammation in American Football Players: A Placebo-Controlled Randomized Controlled Trial. Nutrients 2022; 14:2139. [PMID: 35631280 PMCID: PMC9146417 DOI: 10.3390/nu14102139] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 11/27/2022] Open
Abstract
There are limited studies on neuroprotection from repeated subconcussive head impacts (RSHI) following docosahexaenoic acid (DHA) + eicosapentaenoic acid (EPA) supplementation in contact sports athletes. We performed a randomized, placebo-controlled, double-blinded, parallel-group design trial to determine the impact of 26 weeks of DHA+EPA supplementation (n = 12) vs. placebo (high-oleic safflower oil) (n = 17) on serum concentrations of neurofilament light (NfL), a biomarker of axonal injury, and inflammatory cytokines (interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-a)) in National Collegiate Athletic Association Division I American football athletes. DHA+EPA supplementation increased (p < 0.01) plasma DHA and EPA concentrations throughout the treatment period. NfL concentrations increased from baseline to week 26 in both groups (treatment (<0.001); placebo (p < 0.05)), with starting players (vs. non-starters) showing significant higher circulating concentrations at week 26 (p < 0.01). Fish oil (DHA+EPA) supplementation did not mitigate the adverse effects of RSHI, as measured by NfL levels; however, participants with the highest plasma DHA+EPA concentrations tended to have lower NfL levels. DHA+EPA supplementation had no effects on inflammatory cytokine levels at any of the timepoints tested. These findings emphasize the need for effective strategies to protect American football participants from the effects of RSHI.
Collapse
Affiliation(s)
- Veronica A. Mullins
- School of Nutritional Sciences and Wellness, University of Arizona, 1230 N Cherry Avenue, Tucson, AZ 85719, USA; (V.A.M.); (S.G.); (D.C.); (A.W.); (V.O.); (A.C.S.-R.)
| | - Sarah Graham
- School of Nutritional Sciences and Wellness, University of Arizona, 1230 N Cherry Avenue, Tucson, AZ 85719, USA; (V.A.M.); (S.G.); (D.C.); (A.W.); (V.O.); (A.C.S.-R.)
| | - Danielle Cummings
- School of Nutritional Sciences and Wellness, University of Arizona, 1230 N Cherry Avenue, Tucson, AZ 85719, USA; (V.A.M.); (S.G.); (D.C.); (A.W.); (V.O.); (A.C.S.-R.)
| | - Alva Wood
- School of Nutritional Sciences and Wellness, University of Arizona, 1230 N Cherry Avenue, Tucson, AZ 85719, USA; (V.A.M.); (S.G.); (D.C.); (A.W.); (V.O.); (A.C.S.-R.)
| | - Vanessa Ovando
- School of Nutritional Sciences and Wellness, University of Arizona, 1230 N Cherry Avenue, Tucson, AZ 85719, USA; (V.A.M.); (S.G.); (D.C.); (A.W.); (V.O.); (A.C.S.-R.)
| | - Ann C. Skulas-Ray
- School of Nutritional Sciences and Wellness, University of Arizona, 1230 N Cherry Avenue, Tucson, AZ 85719, USA; (V.A.M.); (S.G.); (D.C.); (A.W.); (V.O.); (A.C.S.-R.)
| | - Dennis Polian
- Baylor Athletics, Baylor University, 1500 South University Parks Drive, Waco, TX 76706, USA;
| | - Yiwei Wang
- Center for Innovation in Brain Science, University of Arizona, 1230 N. Cherry Avenue, Tucson, AZ 85719, USA; (Y.W.); (G.D.H.); (C.M.L.); (A.C.R.); (R.D.B.)
| | - Gerson D. Hernandez
- Center for Innovation in Brain Science, University of Arizona, 1230 N. Cherry Avenue, Tucson, AZ 85719, USA; (Y.W.); (G.D.H.); (C.M.L.); (A.C.R.); (R.D.B.)
| | - Claudia M. Lopez
- Center for Innovation in Brain Science, University of Arizona, 1230 N. Cherry Avenue, Tucson, AZ 85719, USA; (Y.W.); (G.D.H.); (C.M.L.); (A.C.R.); (R.D.B.)
| | - Adam C. Raikes
- Center for Innovation in Brain Science, University of Arizona, 1230 N. Cherry Avenue, Tucson, AZ 85719, USA; (Y.W.); (G.D.H.); (C.M.L.); (A.C.R.); (R.D.B.)
| | - Roberta D. Brinton
- Center for Innovation in Brain Science, University of Arizona, 1230 N. Cherry Avenue, Tucson, AZ 85719, USA; (Y.W.); (G.D.H.); (C.M.L.); (A.C.R.); (R.D.B.)
| | - Floyd H. Chilton
- School of Nutritional Sciences and Wellness, University of Arizona, 1230 N Cherry Avenue, Tucson, AZ 85719, USA; (V.A.M.); (S.G.); (D.C.); (A.W.); (V.O.); (A.C.S.-R.)
| |
Collapse
|
12
|
Nutritional Considerations for Injury Prevention and Recovery in Combat Sports. Nutrients 2021; 14:nu14010053. [PMID: 35010929 PMCID: PMC8746600 DOI: 10.3390/nu14010053] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/18/2021] [Accepted: 12/20/2021] [Indexed: 11/17/2022] Open
Abstract
Sports participation is not without risk, and most athletes incur at least one injury throughout their careers. Combat sports are popular all around the world, and about one-third of their injuries result in more than 7 days of absence from competition or training. The most frequently injured body regions are the head and neck, followed by the upper and lower limbs, while the most common tissue types injured are superficial tissues and skin, followed by ligaments and joint capsules. Nutrition has significant implications for injury prevention and enhancement of the recovery process due to its effect on the overall physical and psychological well-being of the athlete and improving tissue healing. In particular, amino acid and protein intake, antioxidants, creatine, and omega-3 are given special attention due to their therapeutic roles in preventing muscle loss and anabolic resistance as well as promoting injury healing. The purpose of this review is to present the roles of various nutritional strategies in reducing the risk of injury and improving the treatment and rehabilitation process in combat sports. In this respect, nutritional considerations for muscle, joint, and bone injuries as well as sports-related concussions are presented. The injury risk associated with rapid weight loss is also discussed. Finally, preoperative nutrition and nutritional considerations for returning to a sport after rehabilitation are addressed.
Collapse
|
13
|
Heileson JL, Anzalone AJ, Carbuhn AF, Askow AT, Stone JD, Turner SM, Hillyer LM, Ma DWL, Luedke JA, Jagim AR, Oliver JM. The effect of omega-3 fatty acids on a biomarker of head trauma in NCAA football athletes: a multi-site, non-randomized study. J Int Soc Sports Nutr 2021; 18:65. [PMID: 34579748 PMCID: PMC8477477 DOI: 10.1186/s12970-021-00461-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/12/2021] [Indexed: 12/18/2022] Open
Abstract
Background American-style football (ASF) athletes are at risk for cardiovascular disease (CVD) and exhibit elevated levels of serum neurofilament light (Nf-L), a biomarker of axonal injury that is associated with repetitive head impact exposure over the course of a season of competition. Supplementation with the w-3 fatty acid (FA) docosahexaenoic acid (DHA) attenuates serum Nf-L elevations and improves aspects of CVD, such as the omega-3 index (O3I). However, the effect of combining the w-3 FA eicosapentaenoic acid (EPA) and docosapentaenoic acid (DPA) with DHA on, specifically, serum Nf-L in ASF athletes is unknown. Therefore, this study assessed the effect of supplemental w-3 FA (EPA+DPA+DHA) on serum Nf-L, plasma w-3 FAs, the O3I, and surrogate markers of inflammation over the course of a season. Methods A multi-site, non-randomized design, utilizing two American football teams was employed. One team (n = 3 1) received supplementation with a highly bioavailablew-3 FA formulation (2000mg DHA, 560mg EPA, 320mg DPA, Mindset®, Struct Nutrition, Missoula, MT) during pre-season and throughout the regular season, while the second team served as the control (n = 35) and did not undergo supplementation. Blood was sampled at specific times throughout pre- and regular season coincident w ith changes in intensity, physical contact, and changes in the incidence and severity of head impacts. Group differences were determined via a mixed-model between-within subjects ANOVA. Effect sizes were calculated using Cohen’s dfor all between-group differences. Significance was set a priori at p< .05. Results Compared to the control group, ASF athletes in the treatment group experienced large increases in plasma EPA (p < .001, d = 1.71) and DHA (p < .001, d = 2.10) which contributed to increases in the O3I (p < .001, d = 2.16) and the EPA:AA ratio (p = .001, d = 0.83) and a reduction in the w-6: w-3 ratio (p < .001, d = 1.80). w-3 FA supplementation attenuated elevations in Nf-L (p = .024). The control group experienced a significant increase in Nf-L compared to baseline at several measurement time points (T2, T3, and T4 [p range < .001 – .005, drange = 0.59-0.85]). Conclusions These findings suggest a cardio- and neuroprotective effect of combined EPA+DPA+DHA w-3 FA supplementation in American-style football athletes. Trial registration This trial was registered with the ISRCTN registry (ISRCTN90306741).
Collapse
Affiliation(s)
- Jeffery L Heileson
- Department of Health, Human Performance, and Recreation, Baylor University, Waco, TX, USA
| | | | | | - Andrew T Askow
- Nutrition and Exercise Performance Laboratory, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Jason D Stone
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, USA
| | - Stephanie M Turner
- Department of Kinesiology, Texas Christian University, Fort Worth, TX, USA
| | - Lyn M Hillyer
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Canada
| | - David W L Ma
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Canada
| | - Joel A Luedke
- Athletics Department, University of Wisconsin - La Crosse, La Crosse, WI, USA
| | - Andrew R Jagim
- Sports Medicine, Mayo Clinic Health Systems, Onalaska, WI, USA
| | - Jonathan M Oliver
- Department of Kinesiology, Texas Christian University, Fort Worth, TX, USA
| |
Collapse
|
14
|
Antrobus MR, Brazier J, Stebbings GK, Day SH, Heffernan SM, Kilduff LP, Erskine RM, Williams AG. Genetic Factors That Could Affect Concussion Risk in Elite Rugby. Sports (Basel) 2021; 9:19. [PMID: 33499151 PMCID: PMC7910946 DOI: 10.3390/sports9020019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/11/2021] [Accepted: 01/18/2021] [Indexed: 11/16/2022] Open
Abstract
Elite rugby league and union have some of the highest reported rates of concussion (mild traumatic brain injury) in professional sport due in part to their full-contact high-velocity collision-based nature. Currently, concussions are the most commonly reported match injury during the tackle for both the ball carrier and the tackler (8-28 concussions per 1000 player match hours) and reports exist of reduced cognitive function and long-term health consequences that can end a playing career and produce continued ill health. Concussion is a complex phenotype, influenced by environmental factors and an individual's genetic predisposition. This article reviews concussion incidence within elite rugby and addresses the biomechanics and pathophysiology of concussion and how genetic predisposition may influence incidence, severity and outcome. Associations have been reported between a variety of genetic variants and traumatic brain injury. However, little effort has been devoted to the study of genetic associations with concussion within elite rugby players. Due to a growing understanding of the molecular characteristics underpinning the pathophysiology of concussion, investigating genetic variation within elite rugby is a viable and worthy proposition. Therefore, we propose from this review that several genetic variants within or near candidate genes of interest, namely APOE, MAPT, IL6R, COMT, SLC6A4, 5-HTTLPR, DRD2, DRD4, ANKK1, BDNF and GRIN2A, warrant further study within elite rugby and other sports involving high-velocity collisions.
Collapse
Affiliation(s)
- Mark R. Antrobus
- Sports Genomics Laboratory, Department of Sport and Exercise Sciences, Manchester Metropolitan University, Manchester M1 5GD, UK; (J.B.); (G.K.S.); (A.G.W.)
- Sport and Exercise Science, University of Northampton, Northampton NN1 5PH, UK
| | - Jon Brazier
- Sports Genomics Laboratory, Department of Sport and Exercise Sciences, Manchester Metropolitan University, Manchester M1 5GD, UK; (J.B.); (G.K.S.); (A.G.W.)
- Department of Psychology and Sports Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK
| | - Georgina K. Stebbings
- Sports Genomics Laboratory, Department of Sport and Exercise Sciences, Manchester Metropolitan University, Manchester M1 5GD, UK; (J.B.); (G.K.S.); (A.G.W.)
| | - Stephen H. Day
- Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton WV1 1LY, UK;
| | - Shane M. Heffernan
- Applied Sports, Technology, Exercise and Medicine (A-STEM) Research Centre, College of Engineering, Swansea University, Swansea SA1 8EN, UK; (S.M.H.); (L.P.K.)
| | - Liam P. Kilduff
- Applied Sports, Technology, Exercise and Medicine (A-STEM) Research Centre, College of Engineering, Swansea University, Swansea SA1 8EN, UK; (S.M.H.); (L.P.K.)
| | - Robert M. Erskine
- Research Institute for Sport & Exercise Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK;
- Institute of Sport, Exercise and Health, University College London, London WC1E 6BT, UK
| | - Alun G. Williams
- Sports Genomics Laboratory, Department of Sport and Exercise Sciences, Manchester Metropolitan University, Manchester M1 5GD, UK; (J.B.); (G.K.S.); (A.G.W.)
- Institute of Sport, Exercise and Health, University College London, London WC1E 6BT, UK
| |
Collapse
|