1
|
Cai P, He H, Song X, Qiu T, Chen D, Zhang H. Association between gestational arsenic exposure and infant physical development: a prospective cohort study. BMC Public Health 2024; 24:2292. [PMID: 39174974 PMCID: PMC11342644 DOI: 10.1186/s12889-024-19818-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 08/16/2024] [Indexed: 08/24/2024] Open
Abstract
BACKGROUND Arsenic pollution is widespread worldwide. The association between gestational arsenic exposure and adverse birth outcomes has been demonstrated in previous studies; however, few investigations have examined whether gestational arsenic exposure has adverse effects on infant growth and development after birth. OBJECTIVE Our study was designed to evaluate particular associations between gestational arsenic exposure during pregnancy and newborn birth size and to investigate whether these associations continue to affect infants after birth. METHODS An ongoing prospective cohort study of 1100 pregnant women was conducted at the Wuxi Maternity and Child Health Care Hospital. The total urinary arsenic concentrations in the 2nd and 3rd trimester were determined using atomic fluorescence spectrometry. The relationships between urinary arsenic concentration and foetal growth parameters (birth weight, head circumference, length, and ponderal index), SGA (Small for gestational age), and physical growth of infants within one year after birth were analysed. RESULTS Urinary arsenic concentration in the 3rd trimester was associated with an increased incidence of SGA [adjusted model: OR = 2.860 (95% CI: 1.168, 7.020), P = 0.021)]. Arsenic exposure in late pregnancy had an adverse effect on the physical development of infants before the age of 1 year, and there was an interaction effect with the sex of infants. The weight and length of boys at 6 and 12 months negatively correlated with maternal urinary arsenic levels during late pregnancy. CONCLUSIONS In addition to affecting foetal growth, exposure to arsenic in the 3rd trimester also negatively affected the growth of offspring within the first year of life.
Collapse
Affiliation(s)
- Panyuan Cai
- Experimental Teaching Center of Preventive Medicine, School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Hongning He
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, 230032, China
- Department of Child Health Care, Wuxi Maternity and Child Health Care Hospital, Wuxi, 214002, China
| | - Xiaoyue Song
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, 230032, China
- Department of Child Health Care, Wuxi Maternity and Child Health Care Hospital, Wuxi, 214002, China
| | - Ting Qiu
- Department of Child Health Care, Wuxi Maternity and Child Health Care Hospital, Wuxi, 214002, China
| | - Daozhen Chen
- Department of Clinical Laboratory, Wuxi Maternity and Child Health Care Hospital, Wuxi, 214002, China
| | - Heng Zhang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, 230032, China.
- Department of Child Health Care, Wuxi Maternity and Child Health Care Hospital, Wuxi, 214002, China.
| |
Collapse
|
2
|
Bekdash RA. Epigenetics, Nutrition, and the Brain: Improving Mental Health through Diet. Int J Mol Sci 2024; 25:4036. [PMID: 38612845 PMCID: PMC11012292 DOI: 10.3390/ijms25074036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 03/30/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
The relationship between nutrition and brain health is intricate. Studies suggest that nutrients during early life impact not only human physiology but also mental health. Although the exact molecular mechanisms that depict this relationship remain unclear, there are indications that environmental factors such as eating, lifestyle habits, stress, and physical activity, influence our genes and modulate their function by epigenetic mechanisms to shape mental health outcomes. Epigenetic mechanisms act as crucial link between genes and environmental influences, proving that non-genetic factors could have enduring effects on the epigenome and influence health trajectories. We review studies that demonstrated an epigenetic mechanism of action of nutrition on mental health, focusing on the role of specific micronutrients during critical stages of brain development. The methyl-donor micronutrients of the one-carbon metabolism, such as choline, betaine, methionine, folic acid, VitB6 and VitB12 play critical roles in various physiological processes, including DNA and histone methylation. These micronutrients have been shown to alter gene function and susceptibility to diseases including mental health and metabolic disorders. Understanding how micronutrients influence metabolic genes in humans can lead to the implementation of early nutritional interventions to reduce the risk of developing metabolic and mental health disorders later in life.
Collapse
Affiliation(s)
- Rola A Bekdash
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA
| |
Collapse
|
3
|
Hosseini SH, Khabbazhosseini ZS, Khatibi S, Yahosseini A, Borhaninejad N, Beheshti F, Kakhki S. Folic acid supplementation improved nicotine withdrawal-induced of memory loss via affecting oxidative status, inflammatory response, cholinergic activity, BDNF and amyloid-B in adolescent male rat. Neurosci Lett 2023; 815:137489. [PMID: 37741611 DOI: 10.1016/j.neulet.2023.137489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/27/2023] [Accepted: 09/18/2023] [Indexed: 09/25/2023]
Abstract
BACKGROUND The present study aimed to assess whether folic acid (FA) have potential to prevent memory impairment caused by nicotine (Nico) withdrawal in adolescent male rats. METHODS AND MATERIALS The experiments were divided into 7 groups: 1) vehicle, 2) Nico (Nico 2 mg/kg injection from 21 to 42 days of ages), 3-5) Nico FA5/10/15 mg/kg (received Nico from 21 to 42 days of ages and received FA at three doses 5, 10 and 15 mg/kg 43-63 days of ages), and 6) received normal saline from 21 to 42 days of age after that received FA 15 mg/kg by oral gavage from 43 to 63 days of age. At 64-69 days of ages, behavioral tests related to memory including Morris Water Maze (MWM) and Object Recognition Test (ORT) were performed and related biochemical analysis including the hippocampal levels of oxidative stress markers, inflammatory indices, brain-derived neurotrophic factor (BDNF), nitrite, amyloid-B and acetylcholinesterase [1] were measured. RESULTS Results showed that nicotine exposure in adolescence followed by withdrawal dramatically impaired learning and memory performance along with affecting a variety of biochemical markers in the hippocampal tissues. In addition, it was observed that administration of FA significantly ameliorated Nico withdrawal-induced adverse effects through restoration of the mentioned biochemical disturbances. CONCLUSION The present study and other relevant researches demonstrated that FA as a well-known, inexpensive, and safe supplement has strong potential to either prevent or ameliorate the detrimental effect of Nico withdrawal. However, further investigation is required to be more elucidated the precise mechanisms underlying memory impairment-induced by Nico withdrawal.
Collapse
Affiliation(s)
- Seyed Hossein Hosseini
- Student Research Committee, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | | | - Seyedamirsadra Khatibi
- Student Research Committee, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirreza Yahosseini
- Student Research Committee, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Nafiseh Borhaninejad
- Student Research Committee, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farimah Beheshti
- Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran; Departments of Physiology, School of Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran.
| | - Samaneh Kakhki
- Department of Clinical Biochemistry, School of Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran.
| |
Collapse
|
4
|
Xu FX, Chen X, Zhang H, Fan YJ, Song YP, Lv JW, Xie YL, Huang Y, Chen DZ, Wang H, Xu DX. Association between gestational arsenic exposure and intrauterine growth restriction: the role of folate content. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:89652-89661. [PMID: 35857162 DOI: 10.1007/s11356-022-21961-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Gestational arsenic (As) exposure is associated with intrauterine growth restriction (IUGR). This study explored the association among gestational As exposure, IUGR, and reduction of folate content in maternal and umbilical plasma from 530 mother-and-singleton-offspring pairs. Birth weight (BW) was negatively correlated with As in maternal plasma (r=-0.194, P<0.001) and umbilical plasma (r=-0.235, P<0.001). By contrast, a positive correlation was found between BW and maternal folate content (r=0.198, P<0.001). The subjects were divided into As-L and As-H groups. The influence of As-H on small for gestational age (SGA) infants, a marker of IUGR, was evaluated by multivariate logistic regression that excludes interferences of gestational age, infant sex, and other confounding factors. Mothers with As-H had an elevated risk of SGA infants (adjusted OR, 2.370; P<0.05). Interestingly, maternal folate content was lower in subjects with As-H than those with As-L (22.4±10.7 vs 11.2±6.7 nmol/L, P<0.001). Linear correlation models show that As level was negatively correlated with folate content in maternal plasma (r=-0.615, P<0.001) and umbilical plasma (r=-0.209, P<0.001). Moreover, maternal folate reduction has an obvious mediating effect between increased As and decreased BW (β=-0.078, P<0.05). Our results indicate that folate reduction may be a mediator between gestational As exposure and IUGR.
Collapse
Affiliation(s)
- Fei-Xiang Xu
- Department of Toxicology, Anhui Medical University, Hefei, 230032, Anhui Province, China
| | - Xu Chen
- Department of Toxicology, Anhui Medical University, Hefei, 230032, Anhui Province, China
| | - Heng Zhang
- Department of Toxicology, Anhui Medical University, Hefei, 230032, Anhui Province, China
- Wuxi Maternity and Child Health Care Hospital, Wuxi, 214122, Jiangsu Province, China
| | - Yi-Jun Fan
- Second Affiliated Hospital, Anhui Medical University, Hefei, 230032, Anhui Province, China
| | - Ya-Ping Song
- Department of Toxicology, Anhui Medical University, Hefei, 230032, Anhui Province, China
| | - Jin-Wei Lv
- Department of Toxicology, Anhui Medical University, Hefei, 230032, Anhui Province, China
| | - Ya-Li Xie
- Department of Nutrition, Anhui Medical University, Hefei, 230032, Anhui Province, China
| | - Yichao Huang
- Department of Toxicology, Anhui Medical University, Hefei, 230032, Anhui Province, China
| | - Dao-Zhen Chen
- Wuxi Maternity and Child Health Care Hospital, Wuxi, 214122, Jiangsu Province, China
| | - Hua Wang
- Department of Toxicology, Anhui Medical University, Hefei, 230032, Anhui Province, China
| | - De-Xiang Xu
- Department of Toxicology, Anhui Medical University, Hefei, 230032, Anhui Province, China.
| |
Collapse
|
5
|
Cell-type-specific epigenetic effects of early life stress on the brain. Transl Psychiatry 2022; 12:326. [PMID: 35948532 PMCID: PMC9365848 DOI: 10.1038/s41398-022-02076-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/14/2022] [Accepted: 07/19/2022] [Indexed: 02/08/2023] Open
Abstract
Early life stress (ELS) induces long-term phenotypic adaptations that contribute to increased vulnerability to a host of neuropsychiatric disorders. Epigenetic mechanisms, including DNA methylation, histone modifications and non-coding RNA, are a proposed link between environmental stressors, alterations in gene expression, and phenotypes. Epigenetic modifications play a primary role in shaping functional differences between cell types and can be modified by environmental perturbations, especially in early development. Together with contributions from genetic variation, epigenetic mechanisms orchestrate patterns of gene expression within specific cell types that contribute to phenotypic variation between individuals. To date, many studies have provided insights into epigenetic changes resulting from ELS. However, most of these studies have examined heterogenous brain tissue, despite evidence of cell-type-specific epigenetic modifications in phenotypes associated with ELS. In this review, we focus on rodent and human studies that have examined epigenetic modifications induced by ELS in select cell types isolated from the brain or associated with genes that have cell-type-restricted expression in neurons, microglia, astrocytes, and oligodendrocytes. Although significant challenges remain, future studies using these approaches can enable important mechanistic insight into the role of epigenetic variation in the effects of ELS on brain function.
Collapse
|
6
|
Gallo R, Stoccoro A, Cagiano R, Nicolì V, Ricciardi R, Tancredi R, Trovato R, Santorelli FM, Calderoni S, Muratori F, Migliore L, Coppedè F. Correlation among maternal risk factors, gene methylation and disease severity in females with autism spectrum disorder. Epigenomics 2022; 14:175-185. [PMID: 35081728 DOI: 10.2217/epi-2021-0494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Aim: To detect early-life environmental factors leading to DNA methylation changes of autism spectrum disorder (ASD)-related genes in young ASD females and reveal epigenetic biomarkers of disease severity. Materials & methods: We investigated blood methylation levels of MECP2, OXTR, BDNF, RELN, BCL2, EN2 and HTR1A genes in 42 ASD females. Results: Maternal gestational weight gain correlated with BDNF methylation levels (Bonferroni-corrected p = 0.034), and lack of folic acid supplementation at periconception resulted in higher disease severity in the ASD children (Bonferroni-corrected p = 0.048). RELN methylation levels were inversely correlated with disease severity (Bonferroni corrected p = 0.042). Conclusion: The present study revealed gene-environment interactions and potential epigenetic biomarkers of disease severity in ASD females.
Collapse
Affiliation(s)
- Roberta Gallo
- Department of Translational Research & of New Surgical & Medical Technologies, University of Pisa, Via Roma 55, Pisa, 56126, Italy
| | - Andrea Stoccoro
- Department of Translational Research & of New Surgical & Medical Technologies, University of Pisa, Via Roma 55, Pisa, 56126, Italy
| | - Romina Cagiano
- IRCCS Stella Maris Foundation, Calambrone, Pisa, 56128, Italy
| | - Vanessa Nicolì
- Department of Translational Research & of New Surgical & Medical Technologies, University of Pisa, Via Roma 55, Pisa, 56126, Italy
| | - Rosanna Ricciardi
- Department of Translational Research & of New Surgical & Medical Technologies, University of Pisa, Via Roma 55, Pisa, 56126, Italy
| | | | - Rosanna Trovato
- IRCCS Stella Maris Foundation, Calambrone, Pisa, 56128, Italy
| | | | - Sara Calderoni
- IRCCS Stella Maris Foundation, Calambrone, Pisa, 56128, Italy.,Department of Clinical & Experimental Medicine, University of Pisa, Via Roma 55, Pisa, 56126, Italy
| | - Filippo Muratori
- IRCCS Stella Maris Foundation, Calambrone, Pisa, 56128, Italy.,Department of Clinical & Experimental Medicine, University of Pisa, Via Roma 55, Pisa, 56126, Italy
| | - Lucia Migliore
- Department of Translational Research & of New Surgical & Medical Technologies, University of Pisa, Via Roma 55, Pisa, 56126, Italy
| | - Fabio Coppedè
- Department of Translational Research & of New Surgical & Medical Technologies, University of Pisa, Via Roma 55, Pisa, 56126, Italy
| |
Collapse
|
7
|
Genetics and Epigenetics of One-Carbon Metabolism Pathway in Autism Spectrum Disorder: A Sex-Specific Brain Epigenome? Genes (Basel) 2021; 12:genes12050782. [PMID: 34065323 PMCID: PMC8161134 DOI: 10.3390/genes12050782] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/08/2021] [Accepted: 05/17/2021] [Indexed: 12/11/2022] Open
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental condition affecting behavior and communication, presenting with extremely different clinical phenotypes and features. ASD etiology is composite and multifaceted with several causes and risk factors responsible for different individual disease pathophysiological processes and clinical phenotypes. From a genetic and epigenetic side, several candidate genes have been reported as potentially linked to ASD, which can be detected in about 10–25% of patients. Folate gene polymorphisms have been previously associated with other psychiatric and neurodegenerative diseases, mainly focused on gene variants in the DHFR gene (5q14.1; rs70991108, 19bp ins/del), MTHFR gene (1p36.22; rs1801133, C677T and rs1801131, A1298C), and CBS gene (21q22.3; rs876657421, 844ins68). Of note, their roles have been scarcely investigated from a sex/gender viewpoint, though ASD is characterized by a strong sex gap in onset-risk and progression. The aim of the present review is to point out the molecular mechanisms related to intracellular folate recycling affecting in turn remethylation and transsulfuration pathways having potential effects on ASD. Brain epigenome during fetal life necessarily reflects the sex-dependent different imprint of the genome-environment interactions which effects are difficult to decrypt. We here will focus on the DHFR, MTHFR and CBS gene-triad by dissecting their roles in a sex-oriented view, primarily to bring new perspectives in ASD epigenetics.
Collapse
|