1
|
Taheri RA, Fathi H, Sharafi A, Mirzaei M, Jafari S, Darvishi MH. Niosomes loaded with gold nanoparticles for enhanced radiation therapy in lung cancer. Nanomedicine (Lond) 2024; 19:2257-2270. [PMID: 39325679 PMCID: PMC11487956 DOI: 10.1080/17435889.2024.2393071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 08/13/2024] [Indexed: 09/28/2024] Open
Abstract
Aim: The present investigation aimed to develop niosomes containing gold nanoparticles (Nio-AuNPs) and to evaluate the combinational effect of Nio-AuNPs and x-ray radiation therapy (XRT) on growth inhibition potential and induction of apoptosis in the A549 cell line.Materials & methods: Gold nanoparticles (AuNPs) were synthesized, and niosomes were prepared using the thin-film hydration method. Various techniques were employed to determine their physiochemical characteristics. MTT assay, cell apoptosis analysis and combination index analysis were conducted to evaluate the therapeutic feasibility of Nio-AuNPs combined with XRT.Results: The combination of Nio-AuNPs and XRT resulted in greater cytotoxicity compared with XRT alone or with AuNPs.Conclusion: The AuNPs-loaded niosomal formulation enhances the efficacy of XRT on lung cancer cells in vitro, presenting a promising and effective therapeutic strategy.
Collapse
Affiliation(s)
- Ramezan Ali Taheri
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hamidreza Fathi
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Sharafi
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Morteza Mirzaei
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Shima Jafari
- Student Research Committee, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohammad Hasan Darvishi
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Salicylic acid inhibits growth and sensitizes cervical cancer cells to radiotherapy by activating AMPK/TSC2/mTOR pathway. RADIATION MEDICINE AND PROTECTION 2022. [DOI: 10.1016/j.radmp.2022.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
3
|
Verma N, Tiku AB. Role of mTOR pathway in modulation of radiation induced bystander effects. Int J Radiat Biol 2021; 98:173-182. [PMID: 34855567 DOI: 10.1080/09553002.2022.2013567] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
PURPOSE Radiation-induced bystander effect (RIBE) is considered as an important consequence of radiation exposure. Based on the type of effect induced, it has important implications in radiation therapy. mTOR pathway, a key regulator of cell survival, plays an important role in radiation-induced damages. However, the role of mTOR signaling in the modulation of RIBE is still unclear. We evaluated the role of mTOR pathway in RIBE and its relationship with the radiation response of target cells. MATERIALS AND METHODS Direct and bystander effects were evaluated by using clonogenic and MTT assay in five different cell lines. Expression of mTOR pathway proteins in directly targeted and bystander cells was studied using western blotting. RESULTS Among five different cell lines naïve HT1080 and A549 cells exhibited proliferative bystander effect induced by conditioned media and irradiated conditioned media, while no effect was observed in other cell lines. Everolimus significantly abolished the proliferative bystander effect induced in naïve cells. CONCLUSIONS These results suggested that the mTOR pathway plays an important role in RIBEs. These effects are cell type-specific and depending on the radiosensitivity of the target cells, therapeutic benefits of radiation may be modulated by treatment with mTOR inhibitors.
Collapse
Affiliation(s)
- Neha Verma
- Radiation and Cancer Therapeutics Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Ashu Bhan Tiku
- Radiation and Cancer Therapeutics Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
4
|
Zhu X, Wang Y, Jiang C, Li X, Sun L, Wang G, Fu X. Radiosensitivity-Specific Proteomic and Signaling Pathway Network of Non-Small Cell Lung Cancer (NSCLC). Int J Radiat Oncol Biol Phys 2021; 112:529-541. [PMID: 34506873 DOI: 10.1016/j.ijrobp.2021.08.041] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/07/2021] [Accepted: 08/31/2021] [Indexed: 12/25/2022]
Abstract
PURPOSE An unmet clinical need in non-small cell lung cancer (NSCLC) management is the accurate prediction of radiation response in patients receiving radical radiation therapy. We explored the intrinsic radiosensitivity of NSCLC from the proteomic profiles of NSCLC cell lines and paraffin-embedded human samples. METHODS AND MATERIALS To uncover radiosensitivity-specific proteomic and signaling pathways, we performed quantitative proteomics by data-independent acquisition mass spectrometry assay on 29 human NSCLC cell lines and 13 paraffin-embedded human NSCLC samples. We validated closely interacting radioresistant proteins by western blotting, immunofluorescence, real-time quantitative polymerase chain reaction in NSCLC cell lines, and immunohistochemistry in paraffin-embedded human samples. We validated the functions of 3 key hub proteins by lentivirus transfection, clonogenic survival assay, and flow cytometry. RESULTS The proteomic profiling of NSCLC showed that the intrinsic radiosensitivity of NSCLC is mainly modulated by signaling pathways of proteoglycans in cancer, focal adhesion, and regulation of the actin cytoskeleton. We identified 71 differentially expressed proteins and validated 8 closely interacting proteins as radioresistant proteins of NSCLC. Moreover, we also validated the functionality of integrin-linked protein kinase, p21-activated kinase 1, and Ras GTPase-activating-like protein IQGAP1 in the radiation response of NSCLC cell lines. Finally, with the NSCLC radiosensitivity-specific proteins, we delineated the atlas network of NSCLC radiosensitivity-related signaling pathways. CONCLUSIONS Radiosensitivity-specific proteins could guide individualized radiation therapy in clinical practice by predicting the radiation response of patients with NSCLC. Moreover, the NSCLC radiosensitivity-related signaling pathway atlas could guide further exploration of the underlying mechanism.
Collapse
Affiliation(s)
- Xueru Zhu
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yiting Wang
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Chang Jiang
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoyang Li
- Department of Radiation Oncology, The First Affiliated Hospital of University of Science and Technology of China, Anhui, China
| | - Linying Sun
- Institution of Computing Technology, Chinese Academy of Sciences, Shanghai, China
| | - Guangzhong Wang
- Institution of Computing Technology, Chinese Academy of Sciences, Shanghai, China
| | - Xiaolong Fu
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
5
|
Woo Y, Lee HJ, Kim J, Kang SG, Moon S, Han JA, Jung YM, Jung YJ. Rapamycin Promotes ROS-Mediated Cell Death via Functional Inhibition of xCT Expression in Melanoma Under γ-Irradiation. Front Oncol 2021; 11:665420. [PMID: 33959512 PMCID: PMC8093631 DOI: 10.3389/fonc.2021.665420] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 03/29/2021] [Indexed: 12/13/2022] Open
Abstract
Although many cancer patients are administered radiotherapy for their treatment, the interaction between tumor cells and macrophages in the tumor microenvironment attenuates the curative effects of radiotherapy. The enhanced activation of mTOR signaling in the tumors promotes tumor radioresistance. In this study, the effects of rapamycin on the interaction between tumor cells and macrophages were investigated. Rapamycin and 3BDO were used to regulate the mTOR pathway. In vitro, tumor cells cocultured with macrophages in the presence of each drug under normoxic or hypoxic conditions were irradiated with γ–rays. In vivo, mice were irradiated with γ–radiation after injection with DMSO, rapamycin and 3BDO into tumoral regions. Rapamycin reduced the secretion of IL-4 in tumor cells as well as YM1 in macrophages. Mouse recombinant YM1 decreased the enhanced level of ROS and the colocalized proportion of both xCT and EEA1 in irradiated tumor cells. Human recombinant YKL39 also induced results similar to those of YM1. Moreover, the colocalized proportion of both xCT and LC3 in tumor tissues was elevated by the injection of rapamycin into tumoral regions. Overall, the suppression of mTOR signaling in the tumor microenvironment might be useful for the improvement of tumor radioresistance.
Collapse
Affiliation(s)
- Yunseo Woo
- Department of Biological Sciences, Kangwon National University, Chuncheon, South Korea.,Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon, South Korea
| | - Hyo-Ji Lee
- Department of Biological Sciences, Kangwon National University, Chuncheon, South Korea.,Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon, South Korea
| | - Jeongyeon Kim
- Department of Biological Sciences, Kangwon National University, Chuncheon, South Korea.,Graduate Program in BIT Medical Convergence, Kangwon National University, Chuncheon, South Korea
| | - Seung Goo Kang
- Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon, South Korea.,Department of Systems Immunology, Kangwon National University, Chuncheon, South Korea
| | - Sungjin Moon
- Department of Biological Sciences, Kangwon National University, Chuncheon, South Korea.,Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon, South Korea
| | - Jeong A Han
- Department of Biochemistry and Molecular Biology, Kangwon National University, Chuncheon, South Korea
| | - Young Mee Jung
- Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon, South Korea.,Department of Chemistry, Kangwon National University, Chuncheon, South Korea
| | - Yu-Jin Jung
- Department of Biological Sciences, Kangwon National University, Chuncheon, South Korea.,Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon, South Korea.,Graduate Program in BIT Medical Convergence, Kangwon National University, Chuncheon, South Korea
| |
Collapse
|
6
|
Targets for improving tumor response to radiotherapy. Int Immunopharmacol 2019; 76:105847. [PMID: 31466051 DOI: 10.1016/j.intimp.2019.105847] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/18/2019] [Accepted: 08/20/2019] [Indexed: 02/06/2023]
|
7
|
Wu H, Yu J, Kong D, Xu Y, Zhang Z, Shui J, Li Z, Luo H, Wang K. Population and single‑cell transcriptome analyses reveal diverse transcriptional changes associated with radioresistance in esophageal squamous cell carcinoma. Int J Oncol 2019; 55:1237-1248. [PMID: 31638164 PMCID: PMC6831193 DOI: 10.3892/ijo.2019.4897] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/09/2019] [Indexed: 12/13/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is a tumor composed of heterogeneous cells that easily become radioresistant, which leads to tumor recurrence. The most commonly used treatment for ESCC is fractionated irradiation (FIR) therapy that utilizes ionizing radiation to directly induce cytotoxic cell death. However, this treatment may not be able to eliminate all cancer cells due to high adaptive evolution. To determine whether the transcriptome dynamics during ESCC recurrence formation are associated with FIR response, an in vitro cell culture model for ESCC radioresistance that mimics the common radiotherapy process in patients with ESCC was established in the present study. High‑throughput sequencing analysis of in vitro cultured ESCC cells was performed using different cumulative irradiation doses, as well as tumor samples from FIR‑treated patients with ESCC before and after the development of radioresistance. Radioresistance‑associated genes and signaling pathways that were aberrantly expressed in radioresistant ESCC cells were identified, including autophagy‑related 9B (regulation of autophagy), DNA damage‑inducible transcript 4, myoglobin and plasminogen activator tissue type, which are associated with response to hypoxia, Bcl2‑binding component 3, tumor protein P63 and interferon γ‑inducible protein 16, which are associated with DNA damage response. The heterogeneity and dynamic gene expression of ESCC cells during acquired radioresistance were further studied in primary (41 single cells), 12 Gy FIR‑treated (87 single cells) and 30 Gy FIR‑treated (89 single cells) cancer cells using a single‑cell RNA sequencing approach. The results of the present study comprehensively characterized the transcriptome dynamics during acquired radioresistance in an in vitro model of ESCC and patient tumor samples at the population and single cell level. Single‑cell RNA sequencing revealed the heterogeneity of irradiated ESCC cells and an increase in the radioresistant ESCC cell subpopulation during acquired radioresistance. Overall, these results are of potential clinical relevance as they identify a number of signaling molecules associated with radioresistance, as well as opportunities for the development of novel therapeutic options for the treatment of ESCC.
Collapse
Affiliation(s)
- Hongjin Wu
- NHC Key Laboratory of Drug Addiction Medicine (Kunming Medical University), The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Juehua Yu
- NHC Key Laboratory of Drug Addiction Medicine (Kunming Medical University), The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Deshengyue Kong
- Yunnan Institute of Digestive Disease, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Yu Xu
- NHC Key Laboratory of Drug Addiction Medicine (Kunming Medical University), The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Zunyue Zhang
- NHC Key Laboratory of Drug Addiction Medicine (Kunming Medical University), The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Jing Shui
- Shanghai International Travel Healthcare Center, Shanghai 200000, P.R. China
| | - Ziwei Li
- NHC Key Laboratory of Drug Addiction Medicine (Kunming Medical University), The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Huayou Luo
- Yunnan Institute of Digestive Disease, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Kunhua Wang
- NHC Key Laboratory of Drug Addiction Medicine (Kunming Medical University), The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| |
Collapse
|
8
|
Mura M, Jaksik R, Lalik A, Biernacki K, Kimmel M, Rzeszowska-Wolny J, Fujarewicz K. A mathematical model as a tool to identify microRNAs with highest impact on transcriptome changes. BMC Genomics 2019; 20:114. [PMID: 30727966 PMCID: PMC6366035 DOI: 10.1186/s12864-019-5464-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 01/21/2019] [Indexed: 01/06/2023] Open
Abstract
Background Rapid changes in the expression of many messenger RNA (mRNA) species follow exposure of cells to ionizing radiation. One of the hypothetical mechanisms of this response may include microRNA (miRNA) regulation, since the amounts of miRNAs in cells also vary upon irradiation. To address this possibility, we designed experiments using cancer-derived cell lines transfected with luciferase reporter gene containing sequences targeted by different miRNA species in its 3′- untranslated region. We focus on the early time-course response (1 h past irradiation) to eliminate secondary mRNA expression waves. Results Experiments revealed that the irradiation-induced changes in the mRNA expression depend on the miRNAs which interact with mRNA. To identify the strongest interactions, we propose a mathematical model which predicts the mRNA fold expression changes, caused by perturbation of microRNA-mRNA interactions. Model was applied to experimental data including various cell lines, irradiation doses and observation times, both ours and literature-based. Comparison of modelled and experimental mRNA expression levels given miRNA level changes allows estimating how many and which miRNAs play a significant role in transcriptome response to stress conditions in different cell types. As an example, in the human melanoma cell line the comparison suggests that, globally, a major part of the irradiation-induced changes of mRNA expression can be explained by perturbed miRNA-mRNA interactions. A subset of about 30 out of a few hundred miRNAs expressed in these cells appears to account for the changes. These miRNAs play crucial roles in regulatory mechanisms observed after irradiation. In addition, these miRNAs have a higher average content of GC and a higher number of targeted transcripts, and many have been reported to play a role in the development of cancer. Conclusions Our proposed mathematical modeling approach may be used to identify miRNAs which participate in responses of cells to ionizing radiation, and other stress factors such as extremes of temperature, exposure to toxins, and drugs. Electronic supplementary material The online version of this article (10.1186/s12864-019-5464-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marzena Mura
- Department of Systems Engineering, Institute of Automatic Control, Silesian University of Technology, ul. Akademicka 16, 44-100, Gliwice, Poland. .,, Ardigen S.A., ul. Bobrzyńskiego 14, 30-348, Cracow, Poland.
| | - Roman Jaksik
- Department of Systems Engineering, Institute of Automatic Control, Silesian University of Technology, ul. Akademicka 16, 44-100, Gliwice, Poland.,Centre of Biotechnology, Silesian University of Technology, ul. Bolesława Krzywoustego 8, 44-100, Gliwice, Poland
| | - Anna Lalik
- Department of Systems Engineering, Institute of Automatic Control, Silesian University of Technology, ul. Akademicka 16, 44-100, Gliwice, Poland.,Centre of Biotechnology, Silesian University of Technology, ul. Bolesława Krzywoustego 8, 44-100, Gliwice, Poland
| | - Krzysztof Biernacki
- Department of Medical and Molecular Biology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia in Katowice, Katowice, USA
| | - Marek Kimmel
- Department of Systems Engineering, Institute of Automatic Control, Silesian University of Technology, ul. Akademicka 16, 44-100, Gliwice, Poland.,Departments of Statistics and Bioengineering, Rice University, MS 138, 6100 Main, Houston, TX, 77005, USA
| | - Joanna Rzeszowska-Wolny
- Department of Systems Engineering, Institute of Automatic Control, Silesian University of Technology, ul. Akademicka 16, 44-100, Gliwice, Poland. .,Centre of Biotechnology, Silesian University of Technology, ul. Bolesława Krzywoustego 8, 44-100, Gliwice, Poland.
| | - Krzysztof Fujarewicz
- Department of Systems Engineering, Institute of Automatic Control, Silesian University of Technology, ul. Akademicka 16, 44-100, Gliwice, Poland
| |
Collapse
|
9
|
Lin X, Liu X, Gong C. Expression of engrailed homeobox 2 regulates the proliferation, migration and invasion of non-small cell lung cancer cells. Oncol Lett 2018; 16:536-542. [PMID: 29963129 DOI: 10.3892/ol.2018.8693] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 11/29/2017] [Indexed: 12/14/2022] Open
Abstract
The present study aimed to investigate the expression, biological function and mechanism of action of engrailed homeobox 2 (EN2) in non-small cell lung cancer (NSCLC) at the tissue and cellular level. A total of 42 patients who underwent surgical resection of NSCLC tissues between January 2014 and January 2015 were included in the present study. EN2 mRNA expression levels in explanted NSCLC tissues were determined using reverse-transcription quantitative polymerase chain reaction analysis. Adenocarcinoma human alveolar basal epithelial A549 cells were transfected with negative control plasmids or those containing EN2, enabling its overexpression. To assess the effect of EN2 overexpression in A549 cells, a Cell Counting kit-8 assay was used to analyze cellular proliferation, a Transwell assay was used to evaluate cellular migration and invasion and flow cytometry was used to detect the cell cycle distribution. To measure protein expression of EN2 and β-catenin in A549 cells, western blotting was also conducted. EN2 mRNA expression levels in NSCLC tissues were lower than those in normal tissues, and were associated with metastasis, clinical staging and differentiation degrees of NSCLC. Increased expression of EN2 inhibited the proliferation of A549 cells in vitro, and suppressed their migration and invasion. Elevated EN2 expression inhibited the proliferation of A549 cells by regulating the G1/S phase transition. β-catenin protein expression levels and nuclear translocation in A549 cells were inhibited by EN2 overexpression. The present study demonstrated that expression of EN2 in NSCLC tissues was downregulated and negatively associated with the degree of disease differentiation, lymphatic metastasis and clinical staging. Overexpression of EN2 inhibits the proliferation, migration and invasion of A549 cells, as well as the expression of β-Catenin and nuclear translocation.
Collapse
Affiliation(s)
- Xiangxiao Lin
- Respiratory Department, Affiliated Hospital of Jining Medical University, Jining, Shandong 272000, P.R. China
| | - Xincun Liu
- Respiratory Department, Affiliated Hospital of Jining Medical University, Jining, Shandong 272000, P.R. China
| | - Cunqi Gong
- Department of Clinical Laboratory, Jining No. 1 People's Hospital, Jining, Shandong 272000, P.R. China
| |
Collapse
|
10
|
Hu L, Wang H, Huang L, Zhao Y, Wang J. Crosstalk between autophagy and intracellular radiation response (Review). Int J Oncol 2016; 49:2217-2226. [PMID: 27748893 DOI: 10.3892/ijo.2016.3719] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 09/27/2016] [Indexed: 11/06/2022] Open
Abstract
Autophagy induced by radiation is critical to cell fate decision. Evidence now sheds light on the importance of autophagy induced by cancer radiotherapy. Traditional view considers radiation can directly or indirectly damage DNA which can activate DNA damage the repair signaling pathway, a large number of proteins participating in DNA damage repair signaling pathway such as p53, ATM, PARP1, FOXO3a, mTOR and SIRT1 involved in autophagy regulation. However, emerging recent evidence suggests radiation can also cause injury to extranuclear targets such as plasma membrane, mitochondria and endoplasmic reticulum (ER) and induce accumulation of ceramide, ROS, and Ca2+ concentration which activate many signaling pathways to modulate autophagy. Herein we review the role of autophagy in radiation therapy and the potent intracellular autophagic triggers induced by radiation. We aim to provide a more theoretical basis of radiation-induced autophagy, and provide novel targets for developing cytotoxic drugs to increase radiosensitivity.
Collapse
Affiliation(s)
- Lelin Hu
- Department of Radiation Oncology, Peking University Third Hospital, Haidian, Beijing 100191, P.R. China
| | - Hao Wang
- Department of Radiation Oncology, Peking University Third Hospital, Haidian, Beijing 100191, P.R. China
| | - Li Huang
- Department of Radiation Oncology, Peking University Third Hospital, Haidian, Beijing 100191, P.R. China
| | - Yong Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Junjie Wang
- Department of Radiation Oncology, Peking University Third Hospital, Haidian, Beijing 100191, P.R. China
| |
Collapse
|