1
|
Alvarez-Ibarra A, Parise A, Hasnaoui K, de la Lande A. The physical stage of radiolysis of solvated DNA by high-energy-transfer particles: insights from new first principles simulations. Phys Chem Chem Phys 2020; 22:7747-7758. [DOI: 10.1039/d0cp00165a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Electron dynamics simulations based on density functional theory are carried out on nanometric molecular systems to decipher the primary processes following irradiation of bio-macromolecules by high energy transfer charged particles.
Collapse
Affiliation(s)
| | - Angela Parise
- Université Paris-Saclay
- CNRS
- Institut de Chimie Physique UMR8000
- Orsay
- France
| | - Karim Hasnaoui
- Institut du Développement et des Ressources en Informatique Scientifique
- Rue John von Neumann
- Orsay
- France
- Maison de la Simulation
| | | |
Collapse
|
2
|
Shafizadeh N, Boyé-Péronne S, Soorkia S, Cunha de Miranda BK, Garcia GA, Nahon L, Chen S, de la Lande A, Poisson L, Soep B. The surprisingly high ligation energy of CO to ruthenium porphyrins. Phys Chem Chem Phys 2018; 20:11730-11739. [PMID: 29687125 DOI: 10.1039/c8cp01190g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A combined theoretical and experimental approach has been used to investigate the binding energy of a ruthenium metalloporphyrin ligated with CO, ruthenium tetraphenylporphyrin [RuII TPP], in the RuII oxidation degree. Measurements performed with VUV ionization using the DESIRS beamline at Synchrotron SOLEIL led to adiabatic ionization energies of [RuII TPP] and its complex with CO, [RuII TPP-CO], of 6.48 ± 0.03 eV and 6.60 ± 0.03 eV, respectively, while the ion dissociation threshold of [RuII TPP-CO]+ is measured to be 8.36 ± 0.03 eV using the ground-state neutral complex. These experimental data are used to derive the binding energies of the CO ligand in neutral and cationic complexes (1.88 ± 0.06 eV and 1.76 ± 0.06 eV, respectively) using a Born-Haber cycle. Density functional theory calculations, in very satisfactory agreement with the experimental results, help to get insights into the metal-ligand bond. Notably, the high ligation energies can be rationalized in terms of the ruthenium orbital structure, which is singular compared to that of the iron atom. Thus, beyond indications of a strengthening of the Ru-CO bond due to the decrease in the CO vibrational frequency in the complex as compared to the Fe-CO bond, high-level calculations are essential to accurately describe the metal ligand (CO) bond and show that the Ru-CO bond energy is strongly affected by the splitting of triplet and singlet spin states in uncomplexed [Ru TPP].
Collapse
Affiliation(s)
- Niloufar Shafizadeh
- Institut des Sciences Moléculaires d'Orsay (ISMO), CNRS, Université Paris-Saclay, Université Paris-Sud, Orsay F-91405, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Gillet N, Lévy B, Moliner V, Demachy I, de la Lande A. Theoretical estimation of redox potential of biological quinone cofactors. J Comput Chem 2017; 38:1612-1621. [PMID: 28470751 DOI: 10.1002/jcc.24802] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 03/09/2017] [Accepted: 03/10/2017] [Indexed: 11/10/2022]
Abstract
Redox potentials are essential to understand biological cofactor reactivity and to predict their behavior in biological media. Experimental determination of redox potential in biological system is often difficult due to complexity of biological media but computational approaches can be used to estimate them. Nevertheless, the quality of the computational methodology remains a key issue to validate the results. Instead of looking to the best absolute results, we present here the calibration of theoretical redox potential for quinone derivatives in water coupling QM + MM or QM/MM scheme. Our approach allows using low computational cost theoretical level, ideal for long simulations in biological systems, and determination of the uncertainties linked to the calculations. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Natacha Gillet
- Laboratoire de Chimie-Physique, Université Paris Sud, CNRS, UMR 8000. 15, rue Jean Perrin, 91405 Orsay, CEDEX, France.,Departament de Química Física i Analítica, Universitat Jaume I, Castellón, 12071, Spain
| | - Bernard Lévy
- Laboratoire de Chimie-Physique, Université Paris Sud, CNRS, UMR 8000. 15, rue Jean Perrin, 91405 Orsay, CEDEX, France
| | - Vicent Moliner
- Departament de Química Física i Analítica, Universitat Jaume I, Castellón, 12071, Spain.,Department of Chemistry, University of Bath, Bath BA2 7AY, United Kingdom
| | - Isabelle Demachy
- Laboratoire de Chimie-Physique, Université Paris Sud, CNRS, UMR 8000. 15, rue Jean Perrin, 91405 Orsay, CEDEX, France
| | - Aurélien de la Lande
- Laboratoire de Chimie-Physique, Université Paris Sud, CNRS, UMR 8000. 15, rue Jean Perrin, 91405 Orsay, CEDEX, France
| |
Collapse
|
4
|
Narth C, Gillet N, Cailliez F, Lévy B, de la Lande A. Electron transfer, decoherence, and protein dynamics: insights from atomistic simulations. Acc Chem Res 2015; 48:1090-7. [PMID: 25730126 DOI: 10.1021/ar5002796] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Electron transfer in biological systems drives the processes of life. From cellular respiration to photosynthesis and enzymatic catalysis, electron transfers (ET) are chemical processes on which essential biological functions rely. Over the last 40 years, scientists have sought understanding of how these essential processes function in biology. One important breakthrough was the discovery that Marcus theory (MT) of electron transfer is applicable to biological systems. Chemists have experimentally collected both the reorganization energies (λ) and the driving forces (ΔG°), two parameters of Marcus theory, for a large variety of ET processes in proteins. At the same time, theoretical chemists have developed computational approaches that rely on molecular dynamics and quantum chemistry calculations to access numerical estimates of λ and ΔG°. Yet another crucial piece in determining the rate of an electron transfer is the electronic coupling between the initial and final electronic wave functions. This is an important prefactor in the nonadiabatic rate expression, since it reflects the probability that an electron tunnels from the electron donor to the acceptor through the intervening medium. The fact that a protein matrix supports electron tunneling much more efficiently than vacuum is now well documented, both experimentally and theoretically. Meanwhile, many chemists have provided examples of the rich physical chemistry that can be induced by protein dynamics. This Account describes our studies of the dynamical effects on electron tunneling. We present our analysis of two examples of natural biological systems through MD simulations and tunneling pathway analyses. Through these examples, we show that protein dynamics sustain efficient tunneling. Second, we introduce two time scales: τcoh and τFC. The former characterizes how fast the electronic coupling varies with nuclear vibrations (which cause dephasing). The latter reflects the time taken by the system to leave the crossing region. In the framework of open quantum systems, τFC is a short time approximation of the characteristic decoherence time of the electronic subsystem in interaction with its nuclear environment. The comparison of the respective values of τcoh and τFC allows us to probe the occurrence of non-Condon effects. We use ab initio MD simulations to analyze how decoherence appears in several biological cofactors. We conclude that we cannot account for its order of magnitude by considering only the atoms or bonds directly concerned with the transfer. Decoherence results from contributions from all atoms of the system appearing with a time delay that increases with the distance from the primarily concerned atoms or bonds. The delay and magnitude of the contributions depend on the chemical nature of the system. Finally, we present recent developments based on constrained DFT for efficient and accurate evaluations of the electronic coupling in ab initio MD simulations. These are promising methods to study the subtle fluctuations of the electronic coupling and the mechanisms of electronic decoherence in biological systems.
Collapse
Affiliation(s)
- Christophe Narth
- Laboratoire
de Chimie Théorique, CNRS UMR 7616, Université Pierre et Marie Curie, case courrier 137. 4, Place Jussieu, 75252 Cedex 05 Paris, France
| | - Natacha Gillet
- Laboratoire
de Chimie-Physique, CNRS UMR 8000, Université Paris Sud, Bâtiment
349 - Campus d’Orsay. 15, avenue Jean Perrin, 91405 Cedex Orsay, France
| | - Fabien Cailliez
- Laboratoire
de Chimie-Physique, CNRS UMR 8000, Université Paris Sud, Bâtiment
349 - Campus d’Orsay. 15, avenue Jean Perrin, 91405 Cedex Orsay, France
| | - Bernard Lévy
- Laboratoire
de Chimie-Physique, CNRS UMR 8000, Université Paris Sud, Bâtiment
349 - Campus d’Orsay. 15, avenue Jean Perrin, 91405 Cedex Orsay, France
| | - Aurélien de la Lande
- Laboratoire
de Chimie-Physique, CNRS UMR 8000, Université Paris Sud, Bâtiment
349 - Campus d’Orsay. 15, avenue Jean Perrin, 91405 Cedex Orsay, France
| |
Collapse
|
5
|
Yilmazer ND, Korth M. Enhanced semiempirical QM methods for biomolecular interactions. Comput Struct Biotechnol J 2015; 13:169-75. [PMID: 25848495 PMCID: PMC4372622 DOI: 10.1016/j.csbj.2015.02.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 02/17/2015] [Accepted: 02/19/2015] [Indexed: 12/21/2022] Open
Abstract
Recent successes and failures of the application of 'enhanced' semiempirical QM (SQM) methods are reviewed in the light of the benefits and backdraws of adding dispersion (D) and hydrogen-bond (H) correction terms. We find that the accuracy of SQM-DH methods for non-covalent interactions is very often reported to be comparable to dispersion-corrected density functional theory (DFT-D), while computation times are about three orders of magnitude lower. SQM-DH methods thus open up a possibility to simulate realistically large model systems for problems both in life and materials science with comparably high accuracy.
Collapse
Affiliation(s)
| | - Martin Korth
- Institute of Theoretical Chemistry, Ulm University, D-89069 Ulm, Germany
| |
Collapse
|