1
|
Li Y, Su Z, Dai T, Zheng Y, Chen W, Zhao Y, Wen D. Moderate anthropogenic disturbance stimulates versatile microbial taxa contributing to denitrification and aromatic compound degradation. ENVIRONMENTAL RESEARCH 2023; 238:117106. [PMID: 37699472 DOI: 10.1016/j.envres.2023.117106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/29/2023] [Accepted: 09/06/2023] [Indexed: 09/14/2023]
Abstract
Wastewater treatment plants (WWTPs) effluent often contains a significant amount of residual organic pollutants and nutrients, causing disturbance to the coastal effluent receiving areas (ERA). Microbial communities in coastal ERA sediments may benefit from the coexistence of organic pollutants and nutrients, promoting the emergence of versatile taxa that are capable of eliminating these substances simultaneously. However, the identification and exploration of versatile taxa in natural environments under anthropogenic disturbances remain largely uncharted territory. In this study, we specifically focused on the versatile taxa coupled by the degradation of aromatic compounds (ACs) and denitrification, using Hangzhou Bay in China as our study area. We explored how WWTPs effluent disturbance would affect the versatile taxa, and particularly examined the role of disturbance intensity in shaping their composition. Intriguingly, we found that versatile taxa were mainly derived from denitrifiers like Pseudomonas, suggesting the fulfilled potential of denitrifiers regarding ACs degradation. We also discovered that moderate disturbance stimulated the diversity of versatile taxa, resulting in strengthened functional redundancy. Through correlation network analysis, we further demonstrated that moderate disturbance enhanced the community-level cooperation. Thus, moderate disturbance serves as a catalyst for versatile taxa to maintain community function, making them more resilient to effluent disturbances. Additionally, we identified COD and NO3--N concentrations as significant environmental factors influencing the versatile taxa. Overall, our findings reveal the role of effluent disturbances in the promotion of versatile taxa, and highlight moderate disturbance can foster more robust versatile taxa that are better equipped to handle effluent disturbances.
Collapse
Affiliation(s)
- Yunong Li
- College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Zhiguo Su
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Tianjiao Dai
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Yuhan Zheng
- College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Weidong Chen
- College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Yanan Zhao
- College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Donghui Wen
- College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
2
|
Gao K, Ma M, Liu Y, Ma Z. A comparative study of the removal of o-xylene from gas streams using mesoporous silicas and their silica supported sulfuric acids. JOURNAL OF HAZARDOUS MATERIALS 2021; 409:124965. [PMID: 33440323 DOI: 10.1016/j.jhazmat.2020.124965] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 06/12/2023]
Abstract
The three types of silica supported sulfuric acids (SSA), with the same sulfuric acid loading of 9.25 mmol g-1, were prepared by a wet impregnation method from silica gel (SG), SBA-15 and MCM-41. Characterization of the prepared SSA showed that two anchoring states coexisted for sulfuric acid supported on the surface of the silicas: A physiosorbed (P)-state sulfuric acid; and a chemically bonded (C)-state sulfuric acid. Dynamic adsorption results showed that each SSA had a significant removal capacity for o-xylene gas in the reactive temperature regions. The ranges of the reactive regions were 120-220 °C (SSA/SG), 120-230 °C (SSA/SBA-15) and 120-250 °C (SSA/MCM-41), and this could be attributed to the sulfonation reaction between o-xylene and the anchored sulfuric acid. SSA/MCM-41 showed the highest theoretical breakthrough adsorption capacity (QB, th, 526.71 mg g-1) compared with SSA/SBA-15 (363.54 mg g-1) and SSA/SG (239.15 mg g-1). QB, th was closely associated with the amount or proportion of the C-state sulfuric acid on the surface of each SSA. Optimum breakthrough time and QB, th was obtained by increasing the bed height and decreasing flow rate and inlet concentration. The SSA exhibited excellent recyclability and reuse performance over eight consecutive adsorption/desorption/regeneration cycles. The results suggested that the SSA, especially SSA/MCM-41, might have good potential in applications using adsorbents for the removal of BTEX pollutants.
Collapse
Affiliation(s)
- Kaiyin Gao
- Hebei Key Laboratory of Inorganic Nanomaterials, College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024, Hebei, PR China
| | - Mengze Ma
- Hebei Key Laboratory of Inorganic Nanomaterials, College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024, Hebei, PR China
| | - Yuheng Liu
- College of Pharmaceutical Sciences, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China.
| | - Zichuan Ma
- Hebei Key Laboratory of Inorganic Nanomaterials, College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024, Hebei, PR China.
| |
Collapse
|
3
|
Wei Y, Xu P, Wei T, Chen L, Wang X, Li S, Guo T, Li W. Role of Manganese Doping TiO2 Hollow Spheres under Vacuum Ultraviolet Irradiation. KINETICS AND CATALYSIS 2021. [DOI: 10.1134/s0023158421010110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
4
|
Feng S, Gong L, Zhang Y, Tong Y, Zhang H, Zhu D, Huang X, Yang H. Bioaugmentation potential evaluation of a bacterial consortium composed of isolated Pseudomonas and Rhodococcus for degrading benzene, toluene and styrene in sludge and sewage. BIORESOURCE TECHNOLOGY 2021; 320:124329. [PMID: 33142251 DOI: 10.1016/j.biortech.2020.124329] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/16/2020] [Accepted: 10/23/2020] [Indexed: 06/11/2023]
Abstract
Bioaugmentation was conducted using a bacterial consortium of Pseudomonas putida SW-3 and Rhodococcus ruber SS-4, to test their ability to degrade benzene, toluene, and styrene (BTS). SW-3 and SS-4 were isolated from domestic sludge and sewage samples to establish a synthetic consortium with an optimized ratio of 2:1 to reach a degradation efficiency of 82.5-89.8% of BTS. The bacterial consortium was inoculated with sludge and sewage samples at a ratio of 2:1, resulting in a degradation efficiency of 97.9% and 92.7%, respectively, at a BTS concentration of 1800 mg·L-1. Analysis of bacterial community structure following bioaugmentation indicated an increase in abundance of BTS-degrading bacteria, particularly Acinetobacter and Pseudoxanthomonas in sludge and Pseudomonas in sewage, enhancing the collective BTS degradation ability of the bacterial community. Principal component analysis demonstrated that a more balanced bacterial community structure was established following intervention. This indicated that the selected bacteria are excellent candidates for bioaugmentation.
Collapse
Affiliation(s)
- Shoushuai Feng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 1800 Lihu Road, China
| | - Liangqi Gong
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 1800 Lihu Road, China
| | - Yanke Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 1800 Lihu Road, China
| | - Yanjun Tong
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 1800 Lihu Road, China
| | - Hailing Zhang
- Department of Biological Engineering, College of Life Science, Yantai University, Shandong 408100, China
| | - Deqiang Zhu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Xing Huang
- WUXI City Environmental Technology Co., Ltd, Wuxi, China
| | - Hailin Yang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 1800 Lihu Road, China; Key Laboratory of Carbohydrate Chemistry and Biotechnology (Jiangnan University) Ministry of Education, China.
| |
Collapse
|
5
|
Ahmad F, Zhu D, Sun J. Bacterial chemotaxis: a way forward to aromatic compounds biodegradation. ENVIRONMENTAL SCIENCES EUROPE 2020; 32:52. [DOI: 10.1186/s12302-020-00329-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/23/2020] [Indexed: 07/23/2024]
Abstract
AbstractWorldwide industrial development has released hazardous polycyclic aromatic compounds into the environment. These pollutants need to be removed to improve the quality of the environment. Chemotaxis mechanism has increased the bioavailability of these hydrophobic compounds to microorganisms. The mechanism, however, is poorly understood at the ligand and chemoreceptor interface. Literature is unable to furnish a compiled review of already published data on up-to-date research on molecular aspects of chemotaxis mechanism, ligand and receptor-binding mechanism, and downstream signaling machinery. Moreover, chemotaxis-linked biodegradation of aromatic compounds is required to understand the chemotaxis role in biodegradation better. To fill this knowledge gap, the current review is an attempt to cover PAHs occurrence, chemical composition, and potential posed risks to humankind. The review will cover the aspects of microbial signaling mechanism, the structural diversity of methyl-accepting chemotaxis proteins at the molecular level, discuss chemotaxis mechanism role in biodegradation of aromatic compounds in model bacterial genera, and finally conclude with the potential of bacterial chemotaxis for aromatics biodegradation.
Collapse
|
6
|
Ganesh Kumar A, Mathew NC, Sujitha K, Kirubagaran R, Dharani G. Genome analysis of deep sea piezotolerant Nesiotobacter exalbescens COD22 and toluene degradation studies under high pressure condition. Sci Rep 2019; 9:18724. [PMID: 31822790 PMCID: PMC6904484 DOI: 10.1038/s41598-019-55115-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 10/03/2019] [Indexed: 11/09/2022] Open
Abstract
A marine isolate, Nesiotobacter exalbescens COD22, isolated from deep sea sediment (2100 m depth) was capable of degrading aromatic hydrocarbons. The Nesiotobacter sp. grew well in the presence of toluene at 0.1 MPa and 10 MPa at a rate of 0.24 h-1 and 0.12 h-1, respectively, in custom designed high pressure reactors. Percentage of hydrocarbon degradation was found to be 87.5% at ambient pressure and it reached 92% under high pressure condition within a short retention period of 72 h. The biodegradation of hydrocarbon was confirmed by the accumulation of dicarboxylic acid, benzoic acid, benzyl alcohol and benzaldehyde which are key intermediates in toluene catabolism. The complete genome sequence consists of 4,285,402 bp with 53% GC content and contained 3969 total coding genes. The complete genome analysis revealed unique adaptation and degradation capabilities for complex aromatic compounds, biosurfactant synthesis to facilitate hydrocarbon emulsification, advanced mechanisms for chemotaxis and presence of well developed flagellar assembly. The genomic data corroborated with the results of hydrocarbon biodegradation at high pressure growth conditions and confirmed the biotechnological potential of Nesiotobacter sp. towards bioremediation of hydrocarbon polluted deep sea environments.
Collapse
Affiliation(s)
- A Ganesh Kumar
- Marine Biotechnology Division, Earth System Science Organization - National Institute of Ocean Technology (ESSO - NIOT), Ministry of Earth Sciences (MoES), Government of India, Pallikaranai, Chennai, 600100, India.
| | - Noelin Chinnu Mathew
- Marine Biotechnology Division, Earth System Science Organization - National Institute of Ocean Technology (ESSO - NIOT), Ministry of Earth Sciences (MoES), Government of India, Pallikaranai, Chennai, 600100, India
| | - K Sujitha
- Marine Biotechnology Division, Earth System Science Organization - National Institute of Ocean Technology (ESSO - NIOT), Ministry of Earth Sciences (MoES), Government of India, Pallikaranai, Chennai, 600100, India
| | - R Kirubagaran
- Marine Biotechnology Division, Earth System Science Organization - National Institute of Ocean Technology (ESSO - NIOT), Ministry of Earth Sciences (MoES), Government of India, Pallikaranai, Chennai, 600100, India
| | - G Dharani
- Marine Biotechnology Division, Earth System Science Organization - National Institute of Ocean Technology (ESSO - NIOT), Ministry of Earth Sciences (MoES), Government of India, Pallikaranai, Chennai, 600100, India
| |
Collapse
|
7
|
Xu P, Wei Y, Cheng N, Li S, Li W, Guo T, Wang X. Evaluation on the removal performance of dichloromethane and toluene from waste gases using an airlift packing reactor. JOURNAL OF HAZARDOUS MATERIALS 2019; 366:105-113. [PMID: 30502570 DOI: 10.1016/j.jhazmat.2018.11.081] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 11/20/2018] [Accepted: 11/21/2018] [Indexed: 06/09/2023]
Abstract
Biological removal of dichloromethane (DCM) from pharmaceutical industry is limited by its recalcitrance. In this study, an airlift packing reactor (ALPR), which combined the suspended and fixed-film microbial growth system, was set up to remove DCM and co-existed toluene. The removal performance of the ALPR for DCM was greater than traditional airlift reactor (ALR). The maximum elimination capacity (ECmax) of the ALPR for DCM reached 108 g m-3 h-1 with removal efficiency (RE) of 41%, increased by 145% if compared to the ALR. The ECmax for toluene was 172 g m-3 h-1 with RE of 70%, decreased by 25% if compared to the ALR, which was mainly due to the higher liquid-phase biomass in the ALR. The results of high-throughput sequencing showed that the microbial composition on the packings of the ALPR had a large difference from its liquid-phase or the liquid-phase of the ALR. Gemmobacter, Rhizomicrobium, Chitinophaga, Vampirovibrio, and Fodinicurvata were genera with great abundance fixed on the packings and Rhizomicrobium, Chitinophaga, Vampirovibrio, and Fodinicurvata are first to be reported in VOCs biological removal. This study indicated that the ALPR can augment the microbial community and effectively improve the removal of recalcitrant VOCs.
Collapse
Affiliation(s)
- Peilun Xu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Institute of Industrial Ecology and Environment, College of Chemical and Biological Engineering, Zhejiang University (Yuquan Campus), Hangzhou, 310027, China
| | - Yang Wei
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Institute of Industrial Ecology and Environment, College of Chemical and Biological Engineering, Zhejiang University (Yuquan Campus), Hangzhou, 310027, China
| | - Nana Cheng
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Institute of Industrial Ecology and Environment, College of Chemical and Biological Engineering, Zhejiang University (Yuquan Campus), Hangzhou, 310027, China
| | - Sujing Li
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Institute of Industrial Ecology and Environment, College of Chemical and Biological Engineering, Zhejiang University (Yuquan Campus), Hangzhou, 310027, China
| | - Wei Li
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Institute of Industrial Ecology and Environment, College of Chemical and Biological Engineering, Zhejiang University (Yuquan Campus), Hangzhou, 310027, China
| | - Tianjiao Guo
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Institute of Industrial Ecology and Environment, College of Chemical and Biological Engineering, Zhejiang University (Yuquan Campus), Hangzhou, 310027, China.
| | - Xiangqian Wang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Institute of Industrial Ecology and Environment, College of Chemical and Biological Engineering, Zhejiang University (Yuquan Campus), Hangzhou, 310027, China; Technology Innovation and Training Center, Polytechnic Institute, Zhejiang University, Hangzhou, 310015, China.
| |
Collapse
|
8
|
Wang L, Xu R, Yang B, Wei S, Yin N, Cao C. Nonionic surfactant enhanced biodegradation of m-xylene by mixed bacteria and its application in biotrickling filter. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2018; 68:1065-1076. [PMID: 29672237 DOI: 10.1080/10962247.2018.1466741] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 04/09/2018] [Accepted: 04/16/2018] [Indexed: 06/08/2023]
Abstract
UNLABELLED In this study, m-xylene biodegradation was examined in bacteria-water mixed solution and biotrickling filter (BTF) systems amended with the nonionic surfactant Tween 80. The mixed bacteria were obtained from the activated sludge of a coking plant through a multisubstrate acclimatization process. High-throughput sequencing analysis revealed that Rhodanobacter sp. was the dominant species among the mixed bacteria. In the bacteria-water mixed solution, the bacterial density increased with increasing Tween 80 concentration. Hence, Tween 80 could be utilized as substrate by the mixed bacteria. Tween 80, with concentrations of 50-100 mg L-1, could enhance the bioavailability of m-xylene and consequently improve the degradation efficiency of m-xylene. However, further increasing the initial concentration of Tween 80 would decrease the degradation efficiency of m-xylene. At concentrations exceeding 100 mg L-1, Tween 80 was preferentially degraded by the mixed bacteria over m-xylene. In BTF systems, when the m-xylene inlet concentration was 1200 mg m-3 and the empty bed residence time was 20 sec, the removal efficiency and elimination capacity of BTF1 with Tween 80 addition were at most 20% and 24% higher than those of BTF2 without Tween 80 addition. Overall, the integrated application of the mixed bacteria and surfactant was demonstrated to be a highly effective strategy for m-xylene waste gas treatment. IMPLICATIONS The integrated application of mixed bacteria and surfactant was demonstrated to be a promising approach for the highly efficient removal of m-xylene. Surfactant can activate mixed bacteria to degrade m-xylene by increasing its bioavailability. Besides, surfactant can be utilized as carbon source by the mixed bacteria so that the growth of mixed bacteria can be promoted. It is expected that the integrated application of both technologies will become more common in future chemical industry.
Collapse
Affiliation(s)
- Liping Wang
- a School of Environment Science and Spatial Informatics , China University of Mining and Technology , Xuzhou , People's Republic of China
| | - Ruiwei Xu
- a School of Environment Science and Spatial Informatics , China University of Mining and Technology , Xuzhou , People's Republic of China
| | - Bairen Yang
- a School of Environment Science and Spatial Informatics , China University of Mining and Technology , Xuzhou , People's Republic of China
| | - Shaohua Wei
- a School of Environment Science and Spatial Informatics , China University of Mining and Technology , Xuzhou , People's Republic of China
| | - Ningning Yin
- a School of Environment Science and Spatial Informatics , China University of Mining and Technology , Xuzhou , People's Republic of China
| | - Chun Cao
- a School of Environment Science and Spatial Informatics , China University of Mining and Technology , Xuzhou , People's Republic of China
| |
Collapse
|
9
|
Khan MFS, Wu J, Liu B, Cheng C, Akbar M, Chai Y, Memon A. Fluorescence and photophysical properties of xylene isomers in water: with experimental and theoretical approaches. ROYAL SOCIETY OPEN SCIENCE 2018; 5:171719. [PMID: 29515881 PMCID: PMC5830770 DOI: 10.1098/rsos.171719] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 01/04/2018] [Indexed: 06/13/2023]
Abstract
A thorough analysis of the photophysical properties involved in electronic transitions in excitation-emission spectra of xylene isomers has been carried out using the time-dependent density functional theory (PBEPBE/6-31 + G(d,p)) method. For the first time a structural and spectroscopic investigation to distinguish isomers of xylene, a widespread priority pollutant, was conducted experimentally and theoretically. The fluorescence properties of xylene isomers (sole and mixture (binary and ternary)) in water were studied. The fluorescence peak intensities of xylenes were linearly correlated to concentration, in the order of p-xylene > o-xylene > m-xylene at an excitation/emission wavelength (ex/em) of 260 nm/285 nm for o-, m-xylene and ex/em 265 nm/290 nm for p-xylene at the same concentration. The theoretical excitation/emission wavelengths were at ex/em 247 nm/267 nm, 248 nm/269 nm and 251 nm/307 nm for o-, m- and p-xylene, respectively. The vertical excitation and emission state energies of p-xylene (ex/em 4.94 eV/4.03 eV) were lower and the internal conversion energy difference (0.90 eV) was higher than those of m-xylene (ex/em 5.00 eV/4.60 eV) (0.4 eV) and o-xylene (ex/em 5.02 eV/4.64 eV) (0.377 eV). The order of theoretical emission and oscillator strength (0.0187 > 0.0175 > 0.0339) for p-xylene > o-xylene > m-xylene was observed to be in agreement with the experimental fluorescence intensities. These findings provide a novel fast method to distinguish isomers based on their photophysical properties.
Collapse
Affiliation(s)
| | - Jing Wu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, People's Republic of China
| | | | | | | | | | | |
Collapse
|