1
|
Meepagala KM, Anderson CM, Techen N, Duke SO. Pantoea ananatis, a plant growth stimulating bacterium, and its metabolites isolated from Hydrocotyle umbellata (dollarweed). PLANT SIGNALING & BEHAVIOR 2024; 19:2331894. [PMID: 38516998 PMCID: PMC10962587 DOI: 10.1080/15592324.2024.2331894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/22/2024] [Indexed: 03/23/2024]
Abstract
A bacterium growing on infected leaves of Hydrocotyle umbellata, commonly known as dollarweed, was isolated and identified as Pantoea ananatis. An ethyl acetate extract of tryptic soy broth (TSB) liquid culture filtrate of the bacterium was subjected to silica gel chromatography to isolate bioactive molecules. Indole was isolated as the major compound that gave a distinct, foul odor to the extract, together with phenethyl alcohol, phenol, tryptophol, N-acyl-homoserine lactone, 3-(methylthio)-1-propanol, cyclo(L-pro-L-tyr), and cyclo(dehydroAla-L-Leu). This is the first report of the isolation of cyclo(dehydroAla-L-Leu) from a Pantoea species. Even though tryptophol is an intermediate in the indoleacetic acid (IAA) pathway, we were unable to detect or isolate IAA. We investigated the effect of P. ananatis inoculum on the growth of plants. Treatment of Lemna paucicostata Hegelm plants with 4 × 109 colony forming units of P. ananatis stimulated their growth by ca. five-fold after 13 days. After 13 days of treatment, some control plants were browning, but treated plants were greener and no plants were browning. The growth of both Cucumis sativus (cucumber) and Sorghum bicolor (sorghum) plants was increased by ca. 20 to 40%, depending on the growth parameter and species, when the rhizosphere was treated with the bacterium after germination at the same concentration. Plant growth promotion by Pantoea ananatis could be due to the provision of the IAA precursor indole.
Collapse
Affiliation(s)
- Kumudini M. Meepagala
- United States Department of Agriculture, Agricultural Research Service, Natural Products Utilization Research Unit, University, USA
| | - Caleb M. Anderson
- United States Department of Agriculture, Agricultural Research Service, Natural Products Utilization Research Unit, University, USA
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Natascha Techen
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, USA
| | - Stephen O. Duke
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, USA
| |
Collapse
|
2
|
Shin GY, Schachterle JK, Shyntum DY, Moleleki LN, Coutinho TA, Sundin GW. Functional Characterization of a Global Virulence Regulator Hfq and Identification of Hfq-Dependent sRNAs in the Plant Pathogen Pantoea ananatis. Front Microbiol 2019; 10:2075. [PMID: 31572315 PMCID: PMC6749038 DOI: 10.3389/fmicb.2019.02075] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 08/22/2019] [Indexed: 12/26/2022] Open
Abstract
To successfully infect plant hosts, the collective regulation of virulence factors in a bacterial pathogen is crucial. Hfq is an RNA chaperone protein that facilitates the small RNA (sRNA) regulation of global gene expression at the post-transcriptional level. In this study, the functional role of Hfq in a broad host range phytopathogen Pantoea ananatis was determined. Inactivation of the hfq gene in P. ananatis LMG 2665T resulted in the loss of pathogenicity and motility. In addition, there was a significant reduction of quorum sensing signal molecule acyl-homoserine lactone (AHL) production and biofilm formation. Differential sRNA expression analysis between the hfq mutant and wild-type strains of P. ananatis revealed 276 sRNAs affected in their abundance by the loss of hfq at low (OD600 = 0.2) and high cell (OD600 = 0.6) densities. Further analysis identified 25 Hfq-dependent sRNAs, all showing a predicted Rho-independent terminator of transcription and mapping within intergenic regions of the P. ananatis genome. These included known sRNAs such as ArcZ, FnrS, GlmZ, RprA, RyeB, RyhB, RyhB2, Spot42, and SsrA, and 16 novel P. ananatis sRNAs. The current study demonstrated that Hfq is an important component of the collective regulation of virulence factors and sets a foundation for understanding Hfq-sRNA mediated regulation in the phytopathogen P. ananatis.
Collapse
Affiliation(s)
- Gi Yoon Shin
- Centre for Microbial Ecology and Genomics, Forestry and Agricultural Biotechnology Institute, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa.,Forestry and Agricultural Biotechnology Institute, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Jeffrey K Schachterle
- Department of Plant, Soil and Microbial Sciences, College of Agriculture & Natural Resources, Michigan State University, East Lansing, MI, United States
| | - Divine Y Shyntum
- Forestry and Agricultural Biotechnology Institute, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Lucy N Moleleki
- Forestry and Agricultural Biotechnology Institute, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Teresa A Coutinho
- Centre for Microbial Ecology and Genomics, Forestry and Agricultural Biotechnology Institute, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa.,Forestry and Agricultural Biotechnology Institute, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - George W Sundin
- Department of Plant, Soil and Microbial Sciences, College of Agriculture & Natural Resources, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
3
|
Quorum Sensing in Pseudomonas savastanoi pv. savastanoi and Erwinia toletana: Role in Virulence and Interspecies Interactions in the Olive Knot. Appl Environ Microbiol 2018; 84:AEM.00950-18. [PMID: 30006401 DOI: 10.1128/aem.00950-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 07/06/2018] [Indexed: 12/13/2022] Open
Abstract
The olive knot disease (Olea europea L.) is caused by the bacterium Pseudomonas savastanoi pv. savastanoi. P. savastanoi pv. savastanoi in the olive knot undergoes interspecies interactions with the harmless endophyte Erwinia toletana; P. savastanoi pv. savastanoi and E. toletana colocalize and form a stable community, resulting in a more aggressive disease. P. savastanoi pv. savastanoi and Etoletana produce the same type of the N-acylhomoserine lactone (AHL) quorum sensing (QS) signal, and they share AHLs in planta In this work, we have further studied the AHL QS systems of P. savastanoi pv. savastanoi and Etoletana in order to determine possible molecular mechanism(s) involved in this bacterial interspecies interaction/cooperation. The AHL QS regulons of P. savastanoi pv. savastanoi and Etoletana were determined, allowing the identification of several QS-regulated genes. Surprisingly, the P. savastanoi pv. savastanoi QS regulon consisted of only a few loci whereas in Etoletana many putative metabolic genes were regulated by QS, among which are several involved in carbohydrate metabolism. One of these loci was the aldolase-encoding gene garL, which was found to be essential for both colocalization of P. savastanoi pv. savastanoi and Etoletana cells inside olive knots as well as knot development. This study further highlighted that pathogens can cooperate with commensal members of the plant microbiome.IMPORTANCE This is a report on studies of the quorum sensing (QS) systems of the olive knot pathogen Pseudomonas savastanoi pv. savastanoi and olive knot cooperator Erwinia toletana These two bacterial species form a stable community in the olive knot, share QS signals, and cooperate, resulting in a more aggressive disease. In this work we further studied the QS systems by determining their regulons as well as by studying QS-regulated genes which might play a role in this cooperation. This represents a unique in vivo interspecies bacterial virulence model and highlights the importance of bacterial interspecies interaction in disease.
Collapse
|
4
|
Sibanda S, Kwenda S, Tanui CK, Shyntum DY, Coutinho TA, Moleleki LN. Transcriptome Profiling Reveals the EanI/R Quorum Sensing Regulon in Pantoea Ananatis LMG 2665 T. Genes (Basel) 2018; 9:E148. [PMID: 29518982 PMCID: PMC5867869 DOI: 10.3390/genes9030148] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 02/26/2018] [Accepted: 03/01/2018] [Indexed: 11/23/2022] Open
Abstract
Pantoea ananatis LMG 2665T synthesizes and utilizes acyl homoserine lactones (AHLs) for signalling. The complete set of genes regulated by the EanI/R quorum sensing (QS) system in this strain is still not fully known. In this study, RNA-sequencing (RNA-seq) was used to identify the EanI/R regulon in LMG 2665T. Pairwise comparisons of LMG 2665T in the absence of AHLs (Optical density (OD)600 = 0.2) and in the presence of AHLs (OD600 = 0.5) were performed. Additionally, pairwise comparisons of LMG 2665T and its QS mutant at OD600 = 0.5 were undertaken. In total, 608 genes were differentially expressed between LMG 2665T at OD600 = 0.5 versus the same strain at OD600 = 0.2 and 701 genes were differentially expressed between LMG 2665T versus its QS mutant at OD600 = 0.5. A total of 196 genes were commonly differentially expressed between the two approaches. These constituted approximately 4.5% of the whole transcriptome under the experimental conditions used in this study. The RNA-seq data was validated by reverse transcriptase quantitative polymerase chain reaction (RT-qPCR). Genes found to be regulated by EanI/R QS were those coding for redox sensing, metabolism, flagella formation, flagella dependent motility, cell adhesion, biofilm formation, regulators, transport, chemotaxis, methyl accepting proteins, membrane proteins, cell wall synthesis, stress response and a large number of hypothetical proteins. The results of this study give insight into the genes that are regulated by the EanI/R system in LMG 2665T. Functional characterization of the QS regulated genes in LMG 2665T could assist in the formulation of control strategies for this plant pathogen.
Collapse
Affiliation(s)
- Siphathele Sibanda
- Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute (FABI), Faculty of Natural and Agricultural Sciences, University of Pretoria, 0002 Pretoria, South Africa.
- Centre for Microbial Ecology and Genomics (CMEG), Faculty of Natural and Agricultural Sciences, University of Pretoria, 0002 Pretoria, South Africa.
| | - Stanford Kwenda
- Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute (FABI), Faculty of Natural and Agricultural Sciences, University of Pretoria, 0002 Pretoria, South Africa.
| | - Collins K Tanui
- Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute (FABI), Faculty of Natural and Agricultural Sciences, University of Pretoria, 0002 Pretoria, South Africa.
| | - Divine Y Shyntum
- Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute (FABI), Faculty of Natural and Agricultural Sciences, University of Pretoria, 0002 Pretoria, South Africa.
| | - Teresa A Coutinho
- Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute (FABI), Faculty of Natural and Agricultural Sciences, University of Pretoria, 0002 Pretoria, South Africa.
- Centre for Microbial Ecology and Genomics (CMEG), Faculty of Natural and Agricultural Sciences, University of Pretoria, 0002 Pretoria, South Africa.
| | - Lucy N Moleleki
- Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute (FABI), Faculty of Natural and Agricultural Sciences, University of Pretoria, 0002 Pretoria, South Africa.
| |
Collapse
|
5
|
Weller‐Stuart T, De Maayer P, Coutinho T. Pantoea ananatis: genomic insights into a versatile pathogen. MOLECULAR PLANT PATHOLOGY 2017; 18:1191-1198. [PMID: 27880983 PMCID: PMC6638271 DOI: 10.1111/mpp.12517] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Pantoea ananatis, a bacterium that is well known for its phytopathogenic characteristics, has been isolated from a myriad of ecological niches and hosts. Infection of agronomic crops, such as maize and rice, can result in substantial economic losses. In the last few years, much of the research performed on P. ananatis has been based on the sequencing and analysis of the genomes of strains isolated from different environments and with different lifestyles. In this review, we summarize the advances made in terms of pathogenicity determinants of phytopathogenic strains of P. ananatis and how this bacterium is able to adapt and survive in such a wide variety of habitats. The diversity and adaptability of P. ananatis can largely be attributed to the plasticity of its genome and the integration of mobile genetic elements on both the chromosome and plasmid. Furthermore, we discuss the recent interest in this species in various biotechnological applications. TAXONOMY Domain Bacteria; Class Gammaproteobacteria; Family Enterobacteriaceae; genus Pantoea; species ananatis. DISEASE SYMPTOMS Pantoea ananatis causes disease on a wide range of plants, and symptoms can range from dieback and stunted growth in Eucalyptus seedlings to chlorosis and bulb rotting in onions. DISEASE CONTROL Currently, the only methods of control of P. ananatis on most plant hosts are the use of resistant clones and cultivars or the eradication of infected plant material. The use of lytic bacteriophages on certain host plants, such as rice, has also achieved a measure of success.
Collapse
Affiliation(s)
- Tania Weller‐Stuart
- Forestry and Agricultural Biotechnology Institute (FABI), Department of MicrobiologyUniversity of PretoriaPretoria0002South Africa
| | - Pieter De Maayer
- School of Molecular and Cell BiologyUniversity of the WitwatersrandJohannesburg2050South Africa
| | - Teresa Coutinho
- Forestry and Agricultural Biotechnology Institute (FABI), Department of MicrobiologyUniversity of PretoriaPretoria0002South Africa
| |
Collapse
|
6
|
Genome Sequence of Pantoea sp. Strain 1.19, Isolated from Rice Rhizosphere, with the Capacity To Promote Growth of Legumes and Nonlegumes. GENOME ANNOUNCEMENTS 2017; 5:5/30/e00707-17. [PMID: 28751401 PMCID: PMC5532839 DOI: 10.1128/genomea.00707-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Pantoea sp. 1.19, a plant growth-promoting bacterium (PGPB), was isolated from the rhizosphere of rice plants in Spain. Its genome, estimated at 3,771,065 bp, encodes 3,535 coding sequences (CDSs), carrying genes for synthesis of auxins, homoserine lactones, enzymes, siderophores, and quorum sensing. Several CDSs emphasize its biotechnological potential as an agriculture inoculant.
Collapse
|