1
|
Biswas S, Philip I, Jayaram S, Sarojini S. Endophytic bacteria Klebsiella spp. and Bacillus spp. from Alternanthera philoxeroides in Madiwala Lake exhibit additive plant growth-promoting and biocontrol activities. J Genet Eng Biotechnol 2023; 21:153. [PMID: 38030944 PMCID: PMC10686955 DOI: 10.1186/s43141-023-00620-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 11/14/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND The worldwide increase in human population and environmental damage has put immense pressure on the overall global crop production making it inadequate to feed the entire population. Therefore, the need for sustainable and environment-friendly practices to enhance agricultural productivity is a pressing priority. Endophytic bacteria with plant growth-promoting ability and biocontrol activity can strongly enhance plant growth under changing environmental biotic and abiotic conditions. Herein, we isolated halotolerant endophytic bacteria from an aquatic plant, Alternanthera philoxeroides, from the polluted waters of Madiwala Lake in Bangalore and studied their plant growth promotion (PGP) and biocontrol ability for use as bioinoculant. RESULTS The isolated bacterial endophytes were screened for salt tolerance ranging from 5 to 15% NaCl concentration. Klebsiella pneumoniae showed halotolerant up to 10% NaCl and Bacillus amyloliquefaciens and Bacillus subtilis showed up to 15%. All three strains demonstrated good PGP abilities such as aminocyclopropane-1-carboxylic acid (ACC) deaminase activity, phosphate solubilization, ammonia production, and nitrogen fixation. In addition, K. pneumoniae also exhibited high indoleacetic acid (IAA) production (195.66 ± 2.51 µg/ml) and potassium solubilization (2.13 ± 0.07 ppm). B. amyloliquefaciens and B. subtilis showed good extracellular enzyme production against cellulase, lipase, protease, and amylase. Both the isolates showed a broad spectrum of antimicrobial activity against the tested organisms. The optimization of IAA production by K. pneumoniae was done by the response surface methodology (RSM) tool. Characterization of IAA produced by the isolate was done by gas chromatography-mass spectrometry (GCMS) analysis. The enhanced plant growth-promoting ability of K. pneumoniae was also demonstrated using various growth parameters in a pot trial experiment using the seeds of Vigna unguiculata. CONCLUSION The isolated bacterial endophytes reported in this study can be utilized as PGP promotion and biocontrol agents in agricultural applications, to enhance crop yield under salinity stress. The isolate K. pneumoniae may be used as a biofertilizer in sustainable agriculture and more work can be done to optimize the best formulations for its application as a microbial inoculant for crops.
Collapse
Affiliation(s)
- Soma Biswas
- Department of Life Sciences, CHRIST (Deemed to Be University), Bangalore-29, India
| | - Indhu Philip
- Department of Life Sciences, CHRIST (Deemed to Be University), Bangalore-29, India
| | - Saranya Jayaram
- Department of Life Sciences, CHRIST (Deemed to Be University), Bangalore-29, India
| | - Suma Sarojini
- Department of Life Sciences, CHRIST (Deemed to Be University), Bangalore-29, India.
| |
Collapse
|
2
|
Moturu US, Nunna T, Avula VG, Jagarlamudi VR, Gutha RR, Tamminana S. Investigating the diversity of bacterial endophytes in maize and their plant growth-promoting attributes. Folia Microbiol (Praha) 2022; 68:369-379. [DOI: 10.1007/s12223-022-01015-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 11/03/2022] [Indexed: 11/17/2022]
|
3
|
Das S, Verma S, Choudhary P, Singh R, Saxena AK. Deciphering the genetic and functional diversity of cultivable bacteria from chasmophytic pigweed ( Chenopodium album) from Tsomoriri, Ladakh, India. 3 Biotech 2022; 12:242. [PMID: 36032512 PMCID: PMC9399335 DOI: 10.1007/s13205-022-03278-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 07/26/2022] [Indexed: 11/01/2022] Open
Abstract
Chasmophytes are a group of diverse plants growing on cracks and crevices of rocks. They survive under nutrient and water-limited conditions. Microorganisms associated with chasmophytes may play a critical role in their survival. In the present study, 263 bacterial isolates were obtained from chasmophytic wild Chenopodium collected from Tsomoriri, Ladakh. Members of Enterobacter, Pseudomonas, Pantoea, and Alcaligenes comprised ~ 90% of the Gram-negative bacteria, while among Gram-positive, Bacillus, Solibacillus, Fictibacillus, Microbacterium, and Micrococcus were most abundant. When evaluated for various plant growth-promoting traits, 36 bacteria could solubilize insoluble phosphate, 10 bacteria could release potassium from silicate minerals, and 25 bacteria could solubilize ZnO, while 124 bacteria produced siderophores. ACC deaminase activity was present in 31 isolates, while 46 bacteria could produce IAA (10.40-232.0 μg/mL). Furthermore, more than 64% of the isolates could grow at 50 °C, while ~ 60% could grow at 4 °C. Similarly, ~ 50% isolates were able to grow with > 1.7 M NaCl and ~ 70% could grow under high osmolarity (~ 67 mOsmol/L). The ability of these microorganisms to grow under such a wide range of temperature, salinity, and osmolarity offers adaptive advantage to colonize plants surviving under harsh environmental conditions. A large number (30-49%) of these isolates could produce acids from various sugars and sugar alcohols which is crucial to release mineral nutrients trapped in the rocks. The results indicated that genetically and functionally diverse microflora associated with wild Chenopodium might be helping these plants to effectively mine nutrients and water under extreme conditions. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03278-0.
Collapse
Affiliation(s)
- Sudipta Das
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Mau, Uttar Pradesh India
- Amity Institute of Microbial Technology, Amity University, Noida, Uttar Pradesh India
| | - Shaloo Verma
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Mau, Uttar Pradesh India
| | - Prassan Choudhary
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Mau, Uttar Pradesh India
| | - Rajni Singh
- Amity Institute of Microbial Technology, Amity University, Noida, Uttar Pradesh India
| | - Anil Kumar Saxena
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Mau, Uttar Pradesh India
| |
Collapse
|
4
|
Mathur V, Ulanova D. Microbial Metabolites Beneficial to Plant Hosts Across Ecosystems. MICROBIAL ECOLOGY 2022:10.1007/s00248-022-02073-x. [PMID: 35867138 DOI: 10.1007/s00248-022-02073-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Plants are intimately connected with their associated microorganisms. Chemical interactions via natural products between plants and their microbial symbionts form an important aspect in host health and development, both in aquatic and terrestrial ecosystems. These interactions range from negative to beneficial for microbial symbionts as well as their hosts. Symbiotic microbes synchronize their metabolism with their hosts, thus suggesting a possible coevolution among them. Metabolites, synthesized from plants and microbes due to their association and coaction, supplement the already present metabolites, thus promoting plant growth, maintaining physiological status, and countering various biotic and abiotic stress factors. However, environmental changes, such as pollution and temperature variations, as well as anthropogenic-induced monoculture settings, have a significant influence on plant-associated microbial community and its interaction with the host. In this review, we put the prominent microbial metabolites participating in plant-microbe interactions in the natural terrestrial and aquatic ecosystems in a single perspective and have discussed commonalities and differences in these interactions for adaptation to surrounding environment and how environmental changes can alter the same. We also present the status and further possibilities of employing chemical interactions for environment remediation. Our review thus underlines the importance of ecosystem-driven functional adaptations of plant-microbe interactions in natural and anthropogenically influenced ecosystems and their possible applications.
Collapse
Affiliation(s)
- Vartika Mathur
- Animal Plant Interactions Lab, Department of Zoology, Sri Venkateswara College, Benito Juarez Marg, Dhaula Kuan, New Delhi-110021, India.
| | - Dana Ulanova
- Department of Marine Resource Sciences, Faculty of Agriculture and Marine Science, Kochi University, Monobe, Nankoku city, Kochi, 783-8502, Japan.
- Center for Advanced Marine Core Research, Kochi University, Monobe, Nankoku city, Kochi, 783-8502, Japan.
| |
Collapse
|
5
|
Xia Y, Liu J, Chen C, Mo X, Tan Q, He Y, Wang Z, Yin J, Zhou G. The Multifunctions and Future Prospects of Endophytes and Their Metabolites in Plant Disease Management. Microorganisms 2022; 10:microorganisms10051072. [PMID: 35630514 PMCID: PMC9146654 DOI: 10.3390/microorganisms10051072] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/19/2022] [Accepted: 05/21/2022] [Indexed: 01/27/2023] Open
Abstract
Endophytes represent a ubiquitous and magical world in plants. Almost all plant species studied by different researchers have been found to harbor one or more endophytes, which protect host plants from pathogen invasion and from adverse environmental conditions. They produce various metabolites that can directly inhibit the growth of pathogens and even promote the growth and development of the host plants. In this review, we focus on the biological control of plant diseases, aiming to elucidate the contribution and key roles of endophytes and their metabolites in this field with the latest research information. Metabolites synthesized by endophytes are part of plant disease management, and the application of endophyte metabolites to induce plant resistance is very promising. Furthermore, multi-omics should be more fully utilized in plant–microbe research, especially in mining novel bioactive metabolites. We believe that the utilization of endophytes and their metabolites for plant disease management is a meaningful and promising research direction that can lead to new breakthroughs in the development of more effective and ecosystem-friendly insecticides and fungicides in modern agriculture.
Collapse
Affiliation(s)
- Yandong Xia
- Key Laboratory of National Forestry and Grassland Administration on Control of Artificial Forest Diseases and Pests in South China, Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Key Laboratory for Non-Wood Forest Cultivation and Conservation of Ministry of Education, College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China; (Y.X.); (J.L.); (X.M.); (Q.T.); (Y.H.); (Z.W.)
| | - Junang Liu
- Key Laboratory of National Forestry and Grassland Administration on Control of Artificial Forest Diseases and Pests in South China, Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Key Laboratory for Non-Wood Forest Cultivation and Conservation of Ministry of Education, College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China; (Y.X.); (J.L.); (X.M.); (Q.T.); (Y.H.); (Z.W.)
| | - Cang Chen
- College of Life Science, Hunan Normal University, Changsha 410081, China;
| | - Xiuli Mo
- Key Laboratory of National Forestry and Grassland Administration on Control of Artificial Forest Diseases and Pests in South China, Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Key Laboratory for Non-Wood Forest Cultivation and Conservation of Ministry of Education, College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China; (Y.X.); (J.L.); (X.M.); (Q.T.); (Y.H.); (Z.W.)
| | - Qian Tan
- Key Laboratory of National Forestry and Grassland Administration on Control of Artificial Forest Diseases and Pests in South China, Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Key Laboratory for Non-Wood Forest Cultivation and Conservation of Ministry of Education, College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China; (Y.X.); (J.L.); (X.M.); (Q.T.); (Y.H.); (Z.W.)
| | - Yuan He
- Key Laboratory of National Forestry and Grassland Administration on Control of Artificial Forest Diseases and Pests in South China, Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Key Laboratory for Non-Wood Forest Cultivation and Conservation of Ministry of Education, College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China; (Y.X.); (J.L.); (X.M.); (Q.T.); (Y.H.); (Z.W.)
| | - Zhikai Wang
- Key Laboratory of National Forestry and Grassland Administration on Control of Artificial Forest Diseases and Pests in South China, Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Key Laboratory for Non-Wood Forest Cultivation and Conservation of Ministry of Education, College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China; (Y.X.); (J.L.); (X.M.); (Q.T.); (Y.H.); (Z.W.)
| | - Jia Yin
- College of Life Science, Hunan Normal University, Changsha 410081, China;
- Correspondence: (J.Y.); (G.Z.)
| | - Guoying Zhou
- Key Laboratory of National Forestry and Grassland Administration on Control of Artificial Forest Diseases and Pests in South China, Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Key Laboratory for Non-Wood Forest Cultivation and Conservation of Ministry of Education, College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China; (Y.X.); (J.L.); (X.M.); (Q.T.); (Y.H.); (Z.W.)
- Correspondence: (J.Y.); (G.Z.)
| |
Collapse
|
6
|
Kashyap S, Chandra R, Kumar B, Verma P. Biosorption efficiency of nickel by various endophytic bacterial strains for removal of nickel from electroplating industry effluents: an operational study. ECOTOXICOLOGY (LONDON, ENGLAND) 2022; 31:565-580. [PMID: 34184169 DOI: 10.1007/s10646-021-02445-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/08/2021] [Indexed: 06/13/2023]
Abstract
Realising the hazardous effect of nickel on human health, microbes and plants are effectively used for bioremediation. The endophytic microorganisms have an important role in the phytoremediation of nickel using Vigna radiata. Therefore, in order to harness the potential of microbial strains, the present study was designed to examine the metal biosorption ability of endophytic bacterial strains isolated from plants growing in nickel-contaminated soil. A total of six endophytic nickel resistance bacteria were isolated from the plant Vigna radiata. The metal tolerant bacterial strains were identified following 16 S rRNA gene sequence analysis. Nickel biosorption estimation and plant growth-promoting (PGP) activities of isolated strains were performed and found high nickel biosorption efficiency of 91.3 ± 0.72% at 600 mg L-1 using Bacillus safensis an isolated endophytic strain from Vigna radiata. Furthermore, high indole acetic acid (IAA) and exopolysaccharide (EPS) production were obtained in all the strains as compared to without nickel-containing medium used as control. Moreover, the production of high EPS suggests improved biosorption ability of isolated endophytic strains. In addition, a kinetic study was also performed to evaluate different adsorptions isotherms and support the nickel biosorption ability of endophytic strains. The treatment of nickel electroplating industrial effluent was also demonstrated by isolated endophytic strains. Among six (6) strains, B. cereus showed maximum 57.2 ± 0.62% biosorption efficiency of nickel which resulted in the removal of 1003.50 ± 0.90 mg L-1 of nickel from the electroplating industry effluents containing initial 1791 ± 0.90 mg L-1 of nickel. All other strains were also capable of significant nickel biosorption from electroplating industry effluents as well. Thus, isolated endophytic nickel tolerant strains can be further used at large-scale biosorption of nickel from electroplating industry effluent.
Collapse
Affiliation(s)
- Saket Kashyap
- Bioprocess and Bioenergy Laboratory, Department of Microbiology, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, 305817, Rajasthan, India
| | - Rachna Chandra
- Terrestrial Ecology Division, Gujarat Institute of Desert Ecology, Mundra Road, Bhuj, 370001, Gujarat, India
| | - Bikash Kumar
- Bioprocess and Bioenergy Laboratory, Department of Microbiology, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, 305817, Rajasthan, India
| | - Pradeep Verma
- Bioprocess and Bioenergy Laboratory, Department of Microbiology, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, 305817, Rajasthan, India.
| |
Collapse
|
7
|
Zhang X, Tong J, Dong M, Akhtar K, He B. Isolation, identification and characterization of nitrogen fixing endophytic bacteria and their effects on cassava production. PeerJ 2022; 10:e12677. [PMID: 35127278 PMCID: PMC8796710 DOI: 10.7717/peerj.12677] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 12/02/2021] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Cassava (Manibot esculenta Crantz) is one of the most important among tuber crops. The amount of nitrogen fertilizer used for cassava production is relatively high (400 kg ha-1), but there are few studies on biological nitrogen fixation in this crop. Therefore, it is particularly important to study whether cassava and microorganisms have the associated nitrogen-fixing and other promoting effects of endophytic bacteria. METHODS We screened 10 endophytic bacteria using the nitrogen-free culture method from the roots of seven cassava cultivars, and the nitrogenase activity of the A02 strain was the highest 95.81 nmol mL-1 h-1. The A02 strain was confirmed as Microbacteriaceae, Curtobacterium using 16S rRNA sequence alignment. The biological and morphological characteristics of strain A02 were further analyzed. RESULTS The experimental results showed that the biomass of roots, stems, and leaves of cassava inoculated with A02 increased by 17.6%, 12.6%, and 10.3%, respectively, compared to that of the control (without A02 inoculation). These results were not only related to the secretion of auxin (IAA) and solubilization of phosphate but also in the promotion of biological nitrogen fixation of cassava leaves by strain A02. Moreover, the highest 95.81 nmol mL-1h-1 of nitrogenase activity was reported in strain A02, and thus more nitrogen fixation was observed in strain A02. In conclusion, A02 is a newly discovered endophytic nitrogen-fixing bacteria in cassava that can be further used in the research of biological bacterial fertilizers.
Collapse
Affiliation(s)
- Xiao Zhang
- College of Agriculture, Guangxi University, Guangxi, Nanning, China
| | - Juanjuan Tong
- College of Agriculture, Guangxi University, Guangxi, Nanning, China
| | - Mengmeng Dong
- College of Agriculture, Guangxi University, Guangxi, Nanning, China
| | - Kashif Akhtar
- College of Life Science and Technology, Guangxi University, Guangxi, Nanning, China
| | - Bing He
- College of Agriculture, Guangxi University, Guangxi, Nanning, China
| |
Collapse
|
8
|
Ayu Kade Sutariati G, Mila Rahni N, Corina Rakian T, Madiki A, Risqi Maharani R, Mudi L, Nurhayati Yusuf D, Ngurah Adhi Wibawa G. Scarification and Seed Biomatriconditioning Effect Using Endophytic-Rhizobacteria in Areca Nut ( Areca catechu L.) Seedling Vigor. Pak J Biol Sci 2022; 25:168-174. [PMID: 35234006 DOI: 10.3923/pjbs.2022.168.174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
<b>Background and Objective:</b> Intensive and commercial development of areca nut requires the provision of high-vigour areca nut. This study aimed to evaluate the effect of scarification and seeds biomatriconditioning using endophytic-rhizobacteria in increasing seedlings vigor of areca nut. <b>Materials and Methods:</b> The research was carried out at the Agronomy Unit of Agrotechnology Laboratory, Agriculture Faculty, Halu Oleo University, from November, 2020-March, 2021. The research design was split-plot in a Completely Randomized Design (CRD). The main plot, seed scarification, consisted of 2 treatments, without scarification and scarification. Sub-plots, seeds biomatriconditioning using endophytic-rhizobacteria, consisted of 6 treatments, control, L1-R, M5-R, LA6-R, LA2-E and RJ6-R. <b>Results:</b> The results showed that the scarification treatment did not affect the seedlings vigor of the areca nut. Seed biomatriconditioning using endophytic-rhizobacteria was able to increase seedling vigor both without scarification and with scarification. There were 3 isolates of endophytic-rhizobacteria which were more able to increase the vigor of areca nut without scarification, namely L1-R, LA6-R and LA2-E, with an increase of 137, 104 and 102%, respectively compared to the control, while in scarified seeds, L1-R isolate was able to increase the seedlings vigor of areca nut by 194% compared to the control. <b>Conclusion:</b> Scarification treatment did not affect the vigor of the areca nut. Seed biomatriconditioning with endophytic-rhizobacteria was able to increase the vigor of areca nut seeds either without scarification or with scarification.
Collapse
|
9
|
Urumbil SK, Anilkumar MN. Anti-inflammatory activity of endophytic bacterial isolates from Emilia sonchifolia (Linn.) DC. JOURNAL OF ETHNOPHARMACOLOGY 2021; 281:114517. [PMID: 34389445 DOI: 10.1016/j.jep.2021.114517] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/08/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In the traditional medicine system, plants have been utilized as a rich source of anti-microbial, anti-inflammatory, anti-cancer, anti-viral and anti-oxidant compounds. The biological properties of plant-based drugs depend on their interaction with endophytes which persist as an important provider of bioactive secondary metabolites. Bacterial endophytes secrete anti-inflammatory molecules whose activity can be the base for the anti-inflammatory property of the plant. AIM OF THE STUDY During the screening of endophytes from Emilia sonchifolia, we isolated six different bacteria whose potential as the sources of anti-inflamamtory compounds have been aimed at in this study. MATERIALS AND METHODS Anti-inflammatory activity of the ethyl acetate extract of endophytes was studied by both in vitro and in vivo analyses. In vitro study was done using protein denaturation, COX, LOX, iNOS, myeloperoxidase and nitric oxide assays and in vivo analysis was carried out by carrageenan-induced and formalin-induced paw oedema tests. The expression level of anti-inflammatory genes such as COX-2 and NfKb was confirmed by real time PCR. RESULTS We confirmed anti-inflammatory activity of the ethyl acetate extract of bacterial endophytes of E sonchifolia by both in vitro and in vivo experiments. Carrageenan- and formalin-induced inflammations in mice were effectively reduced by the administration of the bacterial extract. Among the isolates, strain ES1effectively reduced inflammation. Gene expression studies confirmed reduction in the expression of COX-2 and NfKb genes in the presence of ES1 extract. CONCLUSION The present investigation demonstrated the anti-inflammatory property of the isolated bacterial endophyte ES1 (Bacillus subtilis strain-MG 692780) and thus justifies the possible role of endophytes in contributing anti-inflammatory property to E sonchifolia which is ethno-botanically important as a source of anti-inflammatory drug.
Collapse
Affiliation(s)
| | - Madhavan Nair Anilkumar
- Cell Culture Lab, Department of Botany, Union Christian College, Aluva, Ernakulam, Pin-683 102, Kerala, India.
| |
Collapse
|
10
|
Sharma P, Kumar S. Bioremediation of heavy metals from industrial effluents by endophytes and their metabolic activity: Recent advances. BIORESOURCE TECHNOLOGY 2021; 339:125589. [PMID: 34304098 DOI: 10.1016/j.biortech.2021.125589] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/10/2021] [Accepted: 07/13/2021] [Indexed: 05/22/2023]
Abstract
Worldwide, heavy metals pollution is mostly caused by rapid population growth and industrial development which is accumulated in food webs causing a serious public health risk. Endophytic microorganisms have a variety of mechanisms for metal sequestration having metal biosorption capacities.Endophytic organisms like bacteria and fungi provide beneficial qualities that help plants to improve their health, reduce stress, and detoxify metals. Endophytes have a higher proclivity for improving metal and mineral solubility by cells that secrete low-molecular-weight organic acids and metal-specific ligands like siderophores, which change the pH of the soil and improve binding activity. Protein-related approaches like chromatin immunoprecipitation sequencing (ChIP-Seq) and modified enzyme-linked immunosorbent assay (ELISA test) can represent endophytic bacterial community and DNA-protein interactions during metal reduction. This review explored the role of endophytes in bioremediation approaches that can help in analyzing the potential and prospects in response to industrial effluents' detoxification.
Collapse
Affiliation(s)
- Pooja Sharma
- CSIR-National Environmental and Engineering Research Institute (CSIR-NEERI), Nagpur 440 020, India
| | - Sunil Kumar
- CSIR-National Environmental and Engineering Research Institute (CSIR-NEERI), Nagpur 440 020, India.
| |
Collapse
|
11
|
Biofertilizer Activity of Azospirillum sp. B510 on the Rice Productivity in Ghana. Microorganisms 2021; 9:microorganisms9092000. [PMID: 34576895 PMCID: PMC8469361 DOI: 10.3390/microorganisms9092000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 11/17/2022] Open
Abstract
Rice production in Ghana has become unsustainable due to the extremely nutrient-poor soils. It is caused by inadequate soil fertility management, including the inefficient application of fertilizers. A practical solution could be the biofertilizers, Azospirillum sp. B510. We performed field trials in Ghana and Japan to compare the effects of B510 colonization on selected Ghanaian rice varieties grown. The B510 inoculation significantly enhanced the rice cultivars’ growth and yield. The phenotypic characteristics observed in rice varieties Exbaika, Ex-Boako, AgraRice, and Amankwatia were mainly short length and high tillering capacity. These features are attributed to the host plant (cv. Nipponbare), from which the strain B510 was isolated. Furthermore, Azospirillum species has been identified as the dominant colonizing bacterium of rice rhizosphere across a diverse range of agroecologies in all major rice-growing regions in Ghana. Our results suggest that the utilization of B510 as a bio-fertilizer presents a promising way to improve rice growth, enhance soil fertility, and sustain rice productivity in Ghana.
Collapse
|
12
|
Eid AM, Fouda A, Abdel-Rahman MA, Salem SS, Elsaied A, Oelmüller R, Hijri M, Bhowmik A, Elkelish A, Hassan SED. Harnessing Bacterial Endophytes for Promotion of Plant Growth and Biotechnological Applications: An Overview. PLANTS (BASEL, SWITZERLAND) 2021; 10:935. [PMID: 34067154 PMCID: PMC8151188 DOI: 10.3390/plants10050935] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 04/29/2021] [Accepted: 05/03/2021] [Indexed: 12/19/2022]
Abstract
Endophytic bacteria colonize plants and live inside them for part of or throughout their life without causing any harm or disease to their hosts. The symbiotic relationship improves the physiology, fitness, and metabolite profile of the plants, while the plants provide food and shelter for the bacteria. The bacteria-induced alterations of the plants offer many possibilities for biotechnological, medicinal, and agricultural applications. The endophytes promote plant growth and fitness through the production of phytohormones or biofertilizers, or by alleviating abiotic and biotic stress tolerance. Strengthening of the plant immune system and suppression of disease are associated with the production of novel antibiotics, secondary metabolites, siderophores, and fertilizers such as nitrogenous or other industrially interesting chemical compounds. Endophytic bacteria can be used for phytoremediation of environmental pollutants or the control of fungal diseases by the production of lytic enzymes such as chitinases and cellulases, and their huge host range allows a broad spectrum of applications to agriculturally and pharmaceutically interesting plant species. More recently, endophytic bacteria have also been used to produce nanoparticles for medical and industrial applications. This review highlights the biotechnological possibilities for bacterial endophyte applications and proposes future goals for their application.
Collapse
Affiliation(s)
- Ahmed M. Eid
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (A.M.E.); (M.A.A.-R.); (S.S.S.); (A.E.)
| | - Amr Fouda
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (A.M.E.); (M.A.A.-R.); (S.S.S.); (A.E.)
| | - Mohamed Ali Abdel-Rahman
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (A.M.E.); (M.A.A.-R.); (S.S.S.); (A.E.)
| | - Salem S. Salem
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (A.M.E.); (M.A.A.-R.); (S.S.S.); (A.E.)
| | - Albaraa Elsaied
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (A.M.E.); (M.A.A.-R.); (S.S.S.); (A.E.)
| | - Ralf Oelmüller
- Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich-Schiller-University, 07743 Jena, Germany; (R.O.); (A.E.)
| | - Mohamed Hijri
- Biodiversity Centre, Institut de Recherche en Biologie Végétale, Université de Montréal and Jardin botanique de Montréal, Montréal, QC 22001, Canada;
- African Genome Center, Mohammed VI Polytechnic University (UM6P), 43150 Ben Guerir, Morocco
| | - Arnab Bhowmik
- Department of Natural Resources and Environmental Design, North Carolina A&T State University, Greensboro, NC 27411, USA;
| | - Amr Elkelish
- Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich-Schiller-University, 07743 Jena, Germany; (R.O.); (A.E.)
- Botany Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| | - Saad El-Din Hassan
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (A.M.E.); (M.A.A.-R.); (S.S.S.); (A.E.)
| |
Collapse
|
13
|
Gupta S, Kaur G, Nirwan J. Role of Endophytes in Plant-Associated Remediation and Plant Growth Promotion: A Deep Insight. Fungal Biol 2021. [DOI: 10.1007/978-3-030-54422-5_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
14
|
Drought-tolerant and plant growth-promoting endophytic Staphylococcus sp. having synergistic effect with silicate supplementation. Arch Microbiol 2020; 202:1899-1906. [PMID: 32448960 DOI: 10.1007/s00203-020-01911-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 03/11/2020] [Accepted: 05/11/2020] [Indexed: 10/24/2022]
Abstract
Endophytic bacteria have been reported to have symbiotic, mutualistic, commensalistic or trophobiotic relationships with various plant parts. As part of its adaptation, many endophytic organisms are known to exhibit properties with multiple beneficial effects to the plant system. Even though many bacterial genera have been identified to have endophytic association, isolation of those which were previously demonstrated well for human association is quite interesting. In the study, endophytic bacteria Ceb1 isolated from the rhizome of Curcuma longa was identified by 16S rDNA sequencing as Staphylococcus sp. Further, Ceb1 was observed to have the ability to tolerate drought stress. While screening for the plant growth-promoting traits, Ceb1 was found to be positive for IAA production both under drought-stressed and normal conditions as confirmed by HPLC. The Ceb1 priming with Vigna unguiculata was observed to enhance the growth parameters of the plant. Analysis of Ceb1-treated plants by ICP-MS further showed modulation of both macro- and micronutrients. Upon drought stress induction in Vigna unguiculata, Ceb1 was found to provide synergistic plant growth-promoting effect to the plant along with the supplemented silicate sources. Under the changing agroclimatic conditions, exploring the plant stress-alleviating effects of endophytes is highly significant.
Collapse
|
15
|
The Interaction Between Plants and Bacterial Endophytes Under Salinity Stress. REFERENCE SERIES IN PHYTOCHEMISTRY 2019. [DOI: 10.1007/978-3-319-90484-9_15] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
16
|
Zhu Y. Isolation and identification of Ammodendron bifolium endophytic bacteria and the action mechanism of selected isolates-induced seed germination and their effects on host osmotic-stress tolerance. Arch Microbiol 2018; 201:431-442. [PMID: 30288562 DOI: 10.1007/s00203-018-1582-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 09/20/2018] [Accepted: 09/28/2018] [Indexed: 11/30/2022]
Abstract
This study aimed to identify Ammodendron bifolium endophytic bacteria, and to evaluate promoting mechanism of selected isolates on seed germination and their effects on host osmotic-stress tolerance. Forty-five strains were isolated from A. bifolium and were classified into 13 different genera by 16S rDNA gene sequence analysis. AY3, AY9 and AG18, which were identified as Staphylococcus, Kocuria, Bacillus sp., promoted host seed ethylene release during germination. Ethrel and 1-aminocyclopropane-1-carboxylic acid (ACC) imitated the effect of AY3, AY9 and AG18 on seed germination. The data suggest that ethylene mediates AY3-, AY9-, AG18-induced A. bifolium seed germination. In addition, osmotic stress prevented seed germination and radicle elongation. However, the inhibitory effect of osmotic stress on seed germination and radicle elongation were rescued by AY3, AY9 and AG18. The results show that AY3, AY9 and AG18 increased osmotic-stress tolerance in A. bifolium. AY3, AY9, AG18 induced A. bifolium seed germination through promoting ethylene production during endophytic bacteria-plant interaction, and increase osmotic-stress tolerance in A. bifolium. AY3, AY9 and AG18 are potential candidates for the protection of A. bifolium.
Collapse
Affiliation(s)
- Yanlei Zhu
- College of Life Sciences, Xinjiang Normal University, Urumqi, 830054, Xinjiang, China. .,College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, China.
| |
Collapse
|