1
|
Ren H, Li Z, Zhou Q, Zhao H, Ma D, Guo X, Cai Z, Li Y, Zhang Z, Zheng Y. Multi-omics analysis of microbial spatiotemporal succession and metabolite differences in pit mud of varying cellar ages and spatial positions. Food Chem X 2025; 26:102287. [PMID: 40092411 PMCID: PMC11910078 DOI: 10.1016/j.fochx.2025.102287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 02/09/2025] [Accepted: 02/15/2025] [Indexed: 03/19/2025] Open
Abstract
Microbes in pit mud (PM) are vital for the solid-state fermentation of strong-flavour baijiu (SFB), influencing the flavour and quality of SFB through metabolic activity. This study aimed to elucidate the differences in microbes and metabolites in PM at varying cellar ages and spatial positions. Microbes and metabolites in PM exhibited significant spatiotemporal variations, with temporal heterogeneity being more pronounced than spatial heterogeneity. Fourteen and 21 dominant genera were identified in 7-year and 50-year PM, respectively. Redundancy analysis suggested that pH, lactic acid, humus, and acetic acid drive microbial community succession. A total of 255 metabolites were identified, with acids, carbohydrates, and alcohols being the most prevalent. Significant positive correlations between the biomarkers and the main differential metabolites were revealed. Structural equation modeling demonstrated significant correlations between physicochemical factors, biomarkers, and the main differential metabolites. This study provides a foundation for future modifications of the quality and flavour of SFB.
Collapse
Affiliation(s)
- Haiwei Ren
- School of Life Science and Engineering, Lanzhou University of Technology, 287 Langongping Road, Lanzhou, Gansu Province 730050, PR China
- China Northwest Collaborative Innovation Center of Low-carbon Unbanization Techonlogies of Gansu and MOE, 287 Langongping Road, Lanzhou, Gansu Province 730050, PR China
| | - Zhijuan Li
- School of Life Science and Engineering, Lanzhou University of Technology, 287 Langongping Road, Lanzhou, Gansu Province 730050, PR China
- China Northwest Collaborative Innovation Center of Low-carbon Unbanization Techonlogies of Gansu and MOE, 287 Langongping Road, Lanzhou, Gansu Province 730050, PR China
| | - Qin Zhou
- School of Life Science and Engineering, Lanzhou University of Technology, 287 Langongping Road, Lanzhou, Gansu Province 730050, PR China
| | - Hongyuan Zhao
- School of Life Science and Engineering, Lanzhou University of Technology, 287 Langongping Road, Lanzhou, Gansu Province 730050, PR China
| | - Donglin Ma
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong Province 524088, PR China
| | - Xiaopeng Guo
- School of Life Science and Engineering, Lanzhou University of Technology, 287 Langongping Road, Lanzhou, Gansu Province 730050, PR China
| | - Zaoning Cai
- School of Life Science and Engineering, Lanzhou University of Technology, 287 Langongping Road, Lanzhou, Gansu Province 730050, PR China
- China Northwest Collaborative Innovation Center of Low-carbon Unbanization Techonlogies of Gansu and MOE, 287 Langongping Road, Lanzhou, Gansu Province 730050, PR China
| | - Yantao Li
- Jinhui Liquor Co. Ltd., Solid fermentation technology innovation center of Gansu Province, Longnan, 742300, PR China
| | - Zhiliang Zhang
- Jinhui Liquor Co. Ltd., Solid fermentation technology innovation center of Gansu Province, Longnan, 742300, PR China
| | - Yi Zheng
- Department of Grain Science and Industry, Kansas State University, 101C BIVAP, 1980 Kimball Avenue, Manhattan, KS 66506, United States
| |
Collapse
|
2
|
Li D, Jia F, Wang L, Chang F. The initial composition and structure of microbial community determined the yield and quality of Baijiu during the spontaneous fermentation. Int Microbiol 2024; 27:143-154. [PMID: 37227543 DOI: 10.1007/s10123-023-00379-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/12/2023] [Accepted: 05/16/2023] [Indexed: 05/26/2023]
Abstract
The microbiota during pit mud fermentation is a crucial factor in Baijiu brewing since it determines the yield and flavor. However, the impact of the microbial community during the initial fermentation stage on Baijiu quality remains uncertain. Herein, high-throughput sequencing was employed to investigate the microbial diversities and distribution during Baijiu fermentation in individual pit mud workshops at both initial and late stages. During the initial fermentation stage, the bacterial community exerted a more pronounced effect on Baijiu quality than the fungal community. And the high-yield pit mud workshop exhibited lower richness and evenness, as well as greater Bray-Curtis dissimilarity during Baijiu fermentation. Lactobacillus was the dominant genus and biomarker in high-yield pit mud, and it constituted the only genus within the bacterial association network during the late fermentation stage. Fungal communities tended to maintain a simple association network with selected core species. Based on the correlation network, Rhizopus and Trichosporon were identified as biomarkers in Baijiu fermentation process. Together, Lactobacillus and Rhizopus could serve as bio-indicators for Baijiu quality during the initial fermentation stage. Therefore, these findings provided novel insights into microbiota interactions during fermentation and the impact of initial microbiota on final Baijiu quality.
Collapse
Affiliation(s)
- Dongjuan Li
- North Anhui Health Vocational College, Suzhou, 234000, China
| | - Fengan Jia
- Shaanxi Institute of Microbiology, Xi'an, 710043, China
| | - Lingling Wang
- North Anhui Health Vocational College, Suzhou, 234000, China
| | - Fan Chang
- Shaanxi Institute of Microbiology, Xi'an, 710043, China.
| |
Collapse
|
3
|
Mao F, Huang J, Zhou R, Qin H, Zhang S, Cai X, Qiu C. Succession of microbial community of the pit mud under the impact of Daqu of Nongxiang Baijiu. J Biosci Bioeng 2023; 136:304-311. [PMID: 37563058 DOI: 10.1016/j.jbiosc.2023.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 07/14/2023] [Accepted: 07/16/2023] [Indexed: 08/12/2023]
Abstract
Complex microbiomes of pit mud play significant roles in imbuing flavors and qualities of Nongxiang Baijiu during fermentation. However, pit mud microbial enrichment and succession is a long process that is also accompanied by aging. Development of high-quality artificial pit mud becomes an urgent problem. In this study, a new medium based on space (TK) Daqu was used to effectively enrich the dominant microorganisms in pit mud. The results showed that Caproiciproducens was the most preponderance in the cultures unadded Daqu, whereas Clostridium sensu stricto 12 was the most preponderance, followed by Caproiciproducens in the enrichment cultures added TK Daqu. It is worth noting that TK Daqu balanced the relative abundance of Caproiciproducens and Clostridium sensu stricto 12 in 100-year pit mud culture (S100), which was more conducive to the increase of methanogens. PICRUSt2 prediction results showed that hydrogenotrophic methanogens could promote the synthesis of caproic acid by using the product H2 as the metabolic substrate and increased significantly in the pit mud enrichment cultures with TK Daqu. The increase of lactate dehydrogenase (EC 1.1.1.27) content in S100 contributed to the degradation of lactic acid and the increase of caproic acid. Adding TK Daqu enrichment cultures is more conducive to the enrichment and metabolic balance of pit mud microorganisms.
Collapse
Affiliation(s)
- Fengjiao Mao
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Jun Huang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Rongqing Zhou
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; National Engineering Laboratory of Clean Technology for Leather Manufacture, Sichuan University, Chengdu 610065, China; National Engineering Research Centre of Solid-state Brewing, Luzhou 646000, China.
| | - Hui Qin
- Lu Zhou Lao Jiao Co., Ltd., Luzhou 646000, China
| | - Suyi Zhang
- Lu Zhou Lao Jiao Co., Ltd., Luzhou 646000, China
| | - Xiaobo Cai
- Lu Zhou Lao Jiao Co., Ltd., Luzhou 646000, China
| | | |
Collapse
|
4
|
Li D, Ye G, Zong X, Zou W. Effect of Multiple Rounds of Enrichment on Metabolite Accumulation and Microbiota Composition of Pit Mud for Baijiu Fermentation. Foods 2023; 12:foods12081594. [PMID: 37107389 PMCID: PMC10137600 DOI: 10.3390/foods12081594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/06/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Pit mud (PM) is the main component of Baijiu (traditional Chinese liquor), and its microorganisms are the primary sources of the aroma of Chinese strong-flavor Baijiu (SFB). Enrichment plays an important role in the selection of functional microorganisms in PM. Herein, the PM of SFB was submitted to six rounds of enrichment using clostridial growth medium (CGM), and changes in the metabolite accumulation and microbiota composition were evaluated. Based on the metabolite production and microbiota composition, the enrichment rounds were classified as the acclimation stage (round 2), main fermentation stage (rounds 3 and 4), and late fermentation stage (rounds 5 and 6). Species within the genus Clostridium dominated in the acclimation stage (65.84-74.51%). In the main fermentation stage, the dominant microbial groups were producers of butyric acid, acetic acid, and caproic acid, which included Clostridium (45.99-74.80%), Caproicibacter (1.45-17.02%), and potential new species within the order of Oscillataceae (14.26-29.10%). In the late stage of enrichment, Pediococcus dominated (45.96-79.44%). Thus, the main fermentation stage can be considered optimal for the isolation of acid-producing bacteria from PM. The findings discussed herein support the development and application of functional bacteria by bioaugmentation, and contribute to improving the quality of PM and SFB production.
Collapse
Affiliation(s)
- Dong Li
- School of Life Science, Sichuan University of Science & Engineering, Yibin 644000, China
| | - Guangbin Ye
- School of Life Science, Sichuan University of Science & Engineering, Yibin 644000, China
- Liquor-Making Biotechnology and Application of Key Laboratory of Sichuan Province, Sichuan University of Science & Engineering, Yibin 644000, China
| | - Xuyan Zong
- School of Life Science, Sichuan University of Science & Engineering, Yibin 644000, China
- Liquor-Making Biotechnology and Application of Key Laboratory of Sichuan Province, Sichuan University of Science & Engineering, Yibin 644000, China
| | - Wei Zou
- School of Life Science, Sichuan University of Science & Engineering, Yibin 644000, China
| |
Collapse
|
5
|
Metabolite-Based Mutualistic Interaction between Two Novel Clostridial Species from Pit Mud Enhances Butyrate and Caproate Production. Appl Environ Microbiol 2022; 88:e0048422. [PMID: 35695571 PMCID: PMC9275218 DOI: 10.1128/aem.00484-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Pit mud microbial consortia play crucial roles in the formation of Chinese strong-flavor baijiu's key flavor-active compounds, especially butyric and caproic acids. Clostridia, one of the abundant bacterial groups in pit mud, were recognized as important butyric and caproic acid producers. Research on the interactions of the pit mud microbial community mainly depends on correlation analysis at present. Interaction between Clostridium and other microorganisms and its involvement in short/medium-chain fatty acid (S/MCFA) metabolism are still unclear. We previously found coculture of two clostridial strains isolated from pit mud, Clostridium fermenticellae JN500901 (C.901) and Novisyntrophococcus fermenticellae JN500902 (N.902), could enhance S/MCFA accumulation. Here, we investigated their underlying interaction mechanism through the combined analysis of phenotype, genome, and transcriptome. Compared to monocultures, coculture of C.901 and N.902 obviously promoted their growth, including shortening the growth lag phase and increasing biomass, and the accumulation of butyric acid and caproic acid. The slight effects of inoculation ratio and continuous passage on the growth and metabolism of coculture indicated the relative stability of their interaction. Transwell coculture and transcriptome analysis showed the interaction between C.901 and N.902 was accomplished by metabolite exchange, i.e., formic acid produced by C.901 activated the Wood-Ljungdahl pathway of N.902, thereby enhancing its production of acetic acid, which was further converted to butyric acid and caproic acid by C.901 through reverse β-oxidation. This work demonstrates the potential roles of mutually beneficial interspecies interactions in the accumulation of key flavor compounds in pit mud. IMPORTANCE Microbial interactions played crucial roles in influencing the assembly, stability, and function of the microbial community. The metabolites of pit mud microbiota are the key to flavor formation of Chinese strong-flavor baijiu. So far, researches on the interactions of the pit mud microbial community have been mainly based on the correlation analysis of sequencing data, and more work needs to be performed to unveil the complicated interaction patterns. Here, we identified a material exchange-based mutualistic interaction system involving two fatty acid-producing clostridial strains (Clostridium fermenticellae JN500901 and Novisyntrophococcus fermenticellae JN500902) isolated from pit mud and systematically elucidated their interaction mechanism for promoting the production of butyric acid and caproic acid, the key flavor-active compounds of baijiu. Our findings provide a new perspective for understanding the complicated interactions of pit mud microorganisms.
Collapse
|
6
|
Cai W, Xue Y, Tang F, Wang Y, Yang S, Liu W, Hou Q, Yang X, Guo Z, Shan C. The Depth-Depended Fungal Diversity and Non-depth-Depended Aroma Profiles of Pit Mud for Strong-Flavor Baijiu. Front Microbiol 2022; 12:789845. [PMID: 35069486 PMCID: PMC8770870 DOI: 10.3389/fmicb.2021.789845] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/03/2021] [Indexed: 01/09/2023] Open
Abstract
Microorganisms in pit mud are the essential factor determining the style of strong flavor Baijiu. The spatial distribution characteristics of fungal communities and aroma in the pit mud for strong flavor Baijiu from Xinjiang, China, were investigated using Illumina MiSeq high-throughput sequencing and electronic nose technology. A total of 138 fungal genera affiliated with 10 fungal phyla were identified from 27 pit mud samples; of these, Saccharomycopsis, Aspergillus, and Apiotrichum were the core fungal communities, and Aspergillus and Apiotrichum were the hubs that maintain the structural stability of fungal communities in pit mud. The fungal richness and diversity, as well as aroma of pit mud, showed no significant spatial heterogeneity, but divergences in pit mud at different depths were mainly in pH, total acid, and high abundance fungi. Moisture, NH4 +, and lactate were the main physicochemical factors involved in the maintenance of fungal stability and quality in pit mud, whereas pH had only a weak effect on fungi in pit mud. In addition, the fungal communities of pit mud were not significantly associated with the aroma. The results of this study provide a foundation for exploring the functional microorganisms and dissecting the brewing mechanism of strong flavor Baijiu in Xinjiang, and also contributes to the improvement of pit mud quality by bioaugmentation and controlling environmental physicochemical factors.
Collapse
Affiliation(s)
- Wenchao Cai
- School of Food Science, Shihezi University, Shihezi, China
- Hubei Provincial Engineering and Technology Research Center for Food Ingredients, Hubei University of Arts and Science, Xiangyang, China
- Engineering Research Center for Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, Shihezi University, Shihezi, China
| | - Yu’ang Xue
- School of Food Science, Shihezi University, Shihezi, China
- Engineering Research Center for Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, Shihezi University, Shihezi, China
| | - Fengxian Tang
- School of Food Science, Shihezi University, Shihezi, China
- Engineering Research Center for Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, Shihezi University, Shihezi, China
| | - Yurong Wang
- Hubei Provincial Engineering and Technology Research Center for Food Ingredients, Hubei University of Arts and Science, Xiangyang, China
| | - Shaoyong Yang
- Hubei Guxiangyang Baijiu Co., Ltd., Xiangyang, China
| | - Wenhui Liu
- Hubei Guxiangyang Baijiu Co., Ltd., Xiangyang, China
| | - Qiangchuan Hou
- Hubei Provincial Engineering and Technology Research Center for Food Ingredients, Hubei University of Arts and Science, Xiangyang, China
| | - Xinquan Yang
- School of Food Science, Shihezi University, Shihezi, China
- Engineering Research Center for Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, Shihezi University, Shihezi, China
| | - Zhuang Guo
- Hubei Provincial Engineering and Technology Research Center for Food Ingredients, Hubei University of Arts and Science, Xiangyang, China
| | - Chunhui Shan
- School of Food Science, Shihezi University, Shihezi, China
- Engineering Research Center for Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, Shihezi University, Shihezi, China
| |
Collapse
|