1
|
Huang J, Liu Y, Wang G, Chen Y, Shen Y, Zhang J, Ji W, Shao J. The Expression Profiles and Clinical Significance of Mixed Lineage Kinases in Glioma. Mediators Inflamm 2024; 2024:5521016. [PMID: 39610810 PMCID: PMC11604285 DOI: 10.1155/2024/5521016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 09/14/2024] [Accepted: 10/12/2024] [Indexed: 11/30/2024] Open
Abstract
Mixed lineage kinases (MLKs), comprising seven members: MLK1-4, dual leucine zipper kinase (DLK), leucine zipper kinase (LZK), and sterile alpha motif and leucine zipper containing kinase (ZAK), belong to the mitogen-activated protein kinase kinase kinase (MAP3K) family. These kinases are implicated in the progression of numerous cancers by activating mitogen-activated protein kinase (MAPK) cascades or functioning as ser/thr and tyr kinases. However, their specific roles in glioma remain elusive. In the present study, we utilized bioinformatics approaches to investigate the expression patterns of MLKs in low-grade gliomas (LGG) and glioblastoma multiforme (GBM). Additionally, we analyzed their clinical significance and delved into the potential mechanisms underlying MLK activity as well as their association with tumor-immune infiltrating cells (TIICs) in glioma. Furthermore, we conducted in vitro studies to elucidate the functional roles of MLK1-2 in glioma. Our findings revealed that the expressions of MLK1-2 were conspicuously downregulated in GBM and positively correlated with patients' overall survival. Conversely, ZAK exhibited an opposing trend. Notably, our newly devised risk score model exhibited superior performance in predicting patient prognoses. Moreover, we analyzed the potential mechanisms of MLK activity and its interplay with tumor immune infiltration. Last, we validated the antitumor effect of MLK1-2 at the in vitro level. In summary, our study sheds new insights into the roles of MLKs in glioma, particularly MLK1-2, and their potential as therapeutic targets.
Collapse
Affiliation(s)
- Jin Huang
- The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Nanjing, China
| | - Yuankun Liu
- The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Nanjing, China
| | - Gaosong Wang
- The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Nanjing, China
| | - Yuning Chen
- The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Nanjing, China
| | - Yifan Shen
- The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Nanjing, China
| | - Jiahao Zhang
- The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Nanjing, China
| | - Wei Ji
- The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Nanjing, China
| | - Junfei Shao
- The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Nanjing, China
| |
Collapse
|
2
|
Ke R, Kumar S, Singh SK, Rana A, Rana B. Molecular insights into the role of mixed lineage kinase 3 in cancer hallmarks. Biochim Biophys Acta Rev Cancer 2024; 1879:189157. [PMID: 39032538 DOI: 10.1016/j.bbcan.2024.189157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 07/14/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Mixed-lineage kinase 3 (MLK3) is a serine/threonine kinase of the MAPK Kinase kinase (MAP3K) family that plays critical roles in various biological processes, including cancer. Upon activation, MLK3 differentially activates downstream MAPKs, such as JNK, p38, and ERK. In addition, it regulates various non-canonical signaling pathways, such as β-catenin, AMPK, Pin1, and PAK1, to regulate cell proliferation, apoptosis, invasion, and metastasis. Recent studies have also uncovered other potentially diverse roles of MLK3 in malignancy, which include metabolic reprogramming, cancer-associated inflammation, and evasion of cancer-related immune surveillance. The role of MLK3 in cancer is complex and cancer-specific, and an understanding of its function at the molecular level aligned specifically with the cancer hallmarks will have profound therapeutic implications for diagnosing and treating MLK3-dependent cancers. This review summarizes the current knowledge about the effect of MLK3 on the hallmarks of cancer, providing insights into its potential as a promising anticancer drug target.
Collapse
Affiliation(s)
- Rong Ke
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA; Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Sandeep Kumar
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA; University of Illinois Hospital and Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Sunil Kumar Singh
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Ajay Rana
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA; University of Illinois Hospital and Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA; Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| | - Basabi Rana
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA; University of Illinois Hospital and Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA; Jesse Brown VA Medical Center, Chicago, IL 60612, USA.
| |
Collapse
|
3
|
Yoon HR, Balupuri A, Lee J, Lee C, Son DH, Jeoung RG, Kim KA, Choi S, Kang NS. Design, synthesis of new 3H-imidazo[4,5-b]pyridine derivatives and evaluation of their inhibitory properties as mixed lineage kinase 3 inhibitors. Bioorg Med Chem Lett 2024; 101:129652. [PMID: 38346577 DOI: 10.1016/j.bmcl.2024.129652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/14/2024] [Accepted: 02/06/2024] [Indexed: 02/18/2024]
Abstract
Mixed-lineage protein kinase 3 (MLK3) is implicated in several human cancers and neurodegenerative diseases. A series of 3H-imidazo[4,5-b]pyridine derivatives were designed, synthesized and evaluated as novel MLK3 inhibitors. A homology model of MLK3 was developed and all designed compounds were docked to assess their binding pattern and affinity toward the MLK3 active site. Based on this knowledge, we synthesized and experimentally evaluated the designed compounds. Majority of the compounds showed significant inhibition of MLK3 in the enzymatic assay. In particular, compounds 9a, 9e, 9j, 9 k, 12b and 12d exhibited IC50 values of 6, 6, 8, 11, 14 and 14 nM, respectively. Furthermore, compounds 9a, 9e, 9 k and 12b exhibited favorable physicochemical properties among these compounds.
Collapse
Affiliation(s)
- Hye Ree Yoon
- Graduate School of New Drug Discovery and Development, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea
| | - Anand Balupuri
- Graduate School of New Drug Discovery and Development, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea
| | - Jinwoo Lee
- Graduate School of New Drug Discovery and Development, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea
| | - Chaeeun Lee
- Graduate School of New Drug Discovery and Development, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea
| | - Dong-Hyun Son
- Graduate School of New Drug Discovery and Development, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea
| | - Re Gin Jeoung
- Graduate School of New Drug Discovery and Development, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea
| | - Kyung Ah Kim
- Graduate School of New Drug Discovery and Development, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea
| | - Sungwook Choi
- Graduate School of New Drug Discovery and Development, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea.
| | - Nam Sook Kang
- Graduate School of New Drug Discovery and Development, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea.
| |
Collapse
|
4
|
Jiang Y, Wang BX, Xie Y, Meng L, Li M, Du CP. MLK3 localizes mainly to the cytoplasm and promotes oxidative stress injury via a positive feedback loop. Cell Biochem Biophys 2023; 81:469-479. [PMID: 37550525 DOI: 10.1007/s12013-023-01159-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2023] [Indexed: 08/09/2023]
Abstract
Activation of mixed lineage kinase 3 (MLK3) by phosphorylation at Thr277/Ser281 stimulates downstream apoptotic pathways and ultimately leads to cell injury. MLK3 is reported to localize to both the cytoplasm and nucleus in human ovarian cancer cells and immortalized ovarian epithelial cells (T80 and T90 cells), and phosphorylation at Thr477 is required for the cytoplasmic retention of MLK3 in T80 cells. However, the subcellular distribution of MLK3 in other cell types has rarely been reported, and whether phosphorylation of MLK3 at Thr277/Ser281 affects its subcellular distribution is unknown. Here, our bioinformatics analysis predicted that MLK3 was mainly distributed in the cytoplasm and nucleus. In the human HEK293T embryonic kidney cell line and murine HT22 hippocampal neuronal cell line, endogenous MLK3 was more abundant in the cytoplasm and less abundant in the nucleus. In addition, overexpressed Myc-tagged MLK3 and EGFP-tagged MLK3 were also observed to localize mainly to the cytoplasm. MLK3 that was activated by phosphorylation at Thr277/Ser281 was mainly distributed in the cytoplasm, and phosphorylation deficient (T277A/S281A) and mimic (T277E/S281E) mutants both showed distributions similar to that of wild type (wt) MLK3, further proving that phosphorylation at Thr277/Ser281 was not involved in regulating MLK3 subcellular localization. In HEK293T cells, H2O2 stimulation accelerated MLK3 phosphorylation (activation), and this phosphorylation was reduced by the antioxidant N-acetylcysteine in a dose-dependent manner. Overexpressing wt MLK3 promoted the production of intracellular reactive oxygen species and increased cell apoptosis, both of which were enhanced by the phosphorylation-mimic (T277E/S281E) MLK3 variant but not by the phosphorylation-deficient (T277A/S281A) MLK3 variant. These findings provided additional evidence for the cytoplasmic and nuclear distribution of MLK3 in HEK293T cells or HT22 cells and revealed the pivotal role of MLK3 in the positive feedback loop of oxidative stress injury.
Collapse
Affiliation(s)
- Yu Jiang
- Research Center for Biochemistry and Molecular Biology, Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Bai-Xue Wang
- Research Center for Biochemistry and Molecular Biology, Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Yi Xie
- Research Center for Biochemistry and Molecular Biology, Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Li Meng
- Research Center for Biochemistry and Molecular Biology, Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Meng Li
- Research Center for Biochemistry and Molecular Biology, Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Cai-Ping Du
- Research Center for Biochemistry and Molecular Biology, Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China.
| |
Collapse
|
5
|
Mehrabipour M, Jasemi NSK, Dvorsky R, Ahmadian MR. A Systematic Compilation of Human SH3 Domains: A Versatile Superfamily in Cellular Signaling. Cells 2023; 12:2054. [PMID: 37626864 PMCID: PMC10453029 DOI: 10.3390/cells12162054] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/02/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
SRC homology 3 (SH3) domains are fundamental modules that enable the assembly of protein complexes through physical interactions with a pool of proline-rich/noncanonical motifs from partner proteins. They are widely studied modular building blocks across all five kingdoms of life and viruses, mediating various biological processes. The SH3 domains are also implicated in the development of human diseases, such as cancer, leukemia, osteoporosis, Alzheimer's disease, and various infections. A database search of the human proteome reveals the existence of 298 SH3 domains in 221 SH3 domain-containing proteins (SH3DCPs), ranging from 13 to 720 kilodaltons. A phylogenetic analysis of human SH3DCPs based on their multi-domain architecture seems to be the most practical way to classify them functionally, with regard to various physiological pathways. This review further summarizes the achievements made in the classification of SH3 domain functions, their binding specificity, and their significance for various diseases when exploiting SH3 protein modular interactions as drug targets.
Collapse
Affiliation(s)
- Mehrnaz Mehrabipour
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (M.M.); (N.S.K.J.)
| | - Neda S. Kazemein Jasemi
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (M.M.); (N.S.K.J.)
| | - Radovan Dvorsky
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (M.M.); (N.S.K.J.)
- Center for Interdisciplinary Biosciences, P. J. Šafárik University, 040 01 Košice, Slovakia
| | - Mohammad R. Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (M.M.); (N.S.K.J.)
| |
Collapse
|
6
|
Yang X, Mai YX, Wei L, Peng LY, Pang FX, Wang LJ, Li ZP, Zhang JF, Jin AM. MLK3 silence suppressed osteogenic differentiation and delayed bone formation via influencing the bone metabolism and disturbing MAPK signaling. J Orthop Translat 2023; 38:98-105. [PMCID: PMC9619354 DOI: 10.1016/j.jot.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/21/2022] [Accepted: 07/05/2022] [Indexed: 11/11/2022] Open
Affiliation(s)
- Xiao Yang
- Department of Spinal Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yong-xin Mai
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lan Wei
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Li-yang Peng
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Feng-xiang Pang
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ling-jun Wang
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhi-peng Li
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Rehabilitation, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Corresponding author. Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China. Tel: +86 13724839892.
| | - Jin-fang Zhang
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Corresponding author. Department of Spinal Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China. Tel: +86 13802983267.
| | - An-min Jin
- Department of Spinal Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Corresponding author. Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
7
|
Umarao P, Rath PP, Gourinath S. Cdc42/Rac Interactive Binding Containing Effector Proteins in Unicellular Protozoans With Reference to Human Host: Locks of the Rho Signaling. Front Genet 2022; 13:781885. [PMID: 35186026 PMCID: PMC8847673 DOI: 10.3389/fgene.2022.781885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 01/14/2022] [Indexed: 11/23/2022] Open
Abstract
Small GTPases are the key to actin cytoskeleton signaling, which opens the lock of effector proteins to forward the signal downstream in several cellular pathways. Actin cytoskeleton assembly is associated with cell polarity, adhesion, movement and other functions in eukaryotic cells. Rho proteins, specifically Cdc42 and Rac, are the primary regulators of actin cytoskeleton dynamics in higher and lower eukaryotes. Effector proteins, present in an inactive state gets activated after binding to the GTP bound Cdc42/Rac to relay a signal downstream. Cdc42/Rac interactive binding (CRIB) motif is an essential conserved sequence found in effector proteins to interact with Cdc42 or Rac. A diverse range of Cdc42/Rac and their effector proteins have evolved from lower to higher eukaryotes. The present study has identified and further classified CRIB containing effector proteins in lower eukaryotes, focusing on parasitic protozoans causing neglected tropical diseases and taking human proteins as a reference point to the highest evolved organism in the evolutionary trait. Lower eukaryotes’ CRIB containing proteins fall into conventional effector molecules, PAKs (p21 activated kinase), Wiskoit-Aldrich Syndrome proteins family, and some have unique domain combinations unlike any known proteins. We also highlight the correlation between the effector protein isoforms and their selective specificity for Cdc42 or Rac proteins during evolution. Here, we report CRIB containing effector proteins; ten in Dictyostelium and Entamoeba, fourteen in Acanthamoeba, one in Trypanosoma and Giardia. CRIB containing effector proteins that have been studied so far in humans are potential candidates for drug targets in cancer, neurological disorders, and others. Conventional CRIB containing proteins from protozoan parasites remain largely elusive and our data provides their identification and classification for further in-depth functional validations. The tropical diseases caused by protozoan parasites lack combinatorial drug targets as effective paradigms. Targeting signaling mechanisms operative in these pathogens can provide greater molecules in combatting their infections.
Collapse
Affiliation(s)
- Preeti Umarao
- Structural Biology Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Pragyan Parimita Rath
- Structural Biology Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Samudrala Gourinath
- Structural Biology Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
8
|
Sun L, Xi S, Zhou Z, Zhang F, Hu P, Cui Y, Wu S, Wang Y, Wu S, Wang Y, Du Y, Zheng J, Yang H, Chen M, Yan Q, Yu D, Shi C, Zhang Y, Xie D, Guan XY, Li Y. Elevated expression of RIT1 hyperactivates RAS/MAPK signal and sensitizes hepatocellular carcinoma to combined treatment with sorafenib and AKT inhibitor. Oncogene 2022; 41:732-744. [PMID: 34845378 DOI: 10.1038/s41388-021-02130-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 11/11/2021] [Accepted: 11/19/2021] [Indexed: 11/08/2022]
Abstract
Hyperactivation of RAS/MAPK signaling is commonly observed in hepatocellular carcinoma (HCC). Gain-of-function mutations of canonical RAS genes, however, are rarely detected and it remains unclear how the activity of this pathway is turned on during hepatocarcinogenesis. We performed a comprehensive analysis of RAS superfamily genetic alterations across ten subfamilies, 152 members in 377 HCC patients from the Cancer Genome Atlas database. RIT1 (Ras-like without CAAX 1) was the most frequently altered RAS member amplified in 13% of the HCC cohort. Both genomic amplification and CREB-mediated transcriptional activation contributed to the elevated RIT1 expression, and its overexpression correlated with RAS/MAPK activation and poor prognosis. Then, we found that RIT1-induced angiogenesis via the MEK/ERK/EIF4E/HIF1-α/VEGFA axis. MAP3K11 and MAP3K12, in addition to CRAF, could mediate this process by binding to RIT1. Moreover, RIT1 increased the phosphorylation of p38 MAPK and AKT to promote cell survival under reactive oxygen species stress. Based on this mechanistic understanding, we treated RIT1-overexpressing HCC with combined regimen sorafenib plus AKT inhibitor, and achieved enhanced antitumor effects in vivo. Our study reveals RAS "orphan" member RIT1 as the most common genetic alteration of RAS family in HCC and combination of sorafenib with AKT inhibitor might be a promising treatment strategy for RIT1-overexpressing HCC.
Collapse
Affiliation(s)
- Liangzhan Sun
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, China
- State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong, China
| | - Shaoyan Xi
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zhengdong Zhou
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Feifei Zhang
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, China
| | - Pengchao Hu
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Yuzhu Cui
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, China
| | - Shasha Wu
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Ying Wang
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Shayi Wu
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, China
| | - Yanchen Wang
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Yuyang Du
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Jingyi Zheng
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Hui Yang
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Miao Chen
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, China
| | - Qian Yan
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, China
- State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong, China
| | - Dandan Yu
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, China
- State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong, China
| | - Chaoran Shi
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, China
| | - Yu Zhang
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, China
| | - Dan Xie
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xin-Yuan Guan
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, China.
- State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong, China.
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.
- University of Hong Kong-Shenzhen Hospital, Shenzhen, China.
| | - Yan Li
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
9
|
Kasturirangan S, Mehdi B, Chadee DN. LATS1 Regulates Mixed-Lineage Kinase 3 (MLK3) Subcellular Localization and MLK3-Mediated Invasion in Ovarian Epithelial Cells. Mol Cell Biol 2021; 41:e0007821. [PMID: 33875576 PMCID: PMC8224236 DOI: 10.1128/mcb.00078-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/07/2021] [Accepted: 04/14/2021] [Indexed: 12/20/2022] Open
Abstract
Mixed-lineage kinase 3 (MLK3) activates mammalian mitogen-activated protein kinase (MAPK) signaling pathways in response to cytokines and stress stimuli. MLK3 is important for proliferation, migration, and invasion of different types of human tumor cells. We observed that endogenous MLK3 was localized to both the cytoplasm and the nucleus in immortalized ovarian epithelial (T80) and ovarian cancer cells, and mutation of arginines 474 and 475 within a putative MLK3 nuclear localization sequence (NLS) resulted in exclusion of MLK3 from the nucleus. The large tumor suppressor (LATS) Ser/Thr kinase regulates cell proliferation, morphology, apoptosis, and mitotic exit in response to cell-cell contact. RNA interference (RNAi)-mediated knockdown of LATS1 increased nuclear, endogenous MLK3 in T80 cells. LATS1 phosphorylated MLK3 on Thr477, which is within the putative NLS, and LATS1 expression enhanced the association between MLK3 and the adapter protein 14-3-3ζ. Thr477 is essential for MLK3-14-3-3ζ association and MLK3 retention in the cytoplasm, and a T477A MLK3 mutant had predominantly nuclear localization and significantly increased invasiveness of SKOV3 ovarian cancer cells. This study identified a novel link between the MAPK and Hippo/LATS1 signaling pathways. Our results reveal LATS1 as a novel regulator of MLK3 that controls MLK3 nuclear/cytoplasmic localization and MLK3-dependent ovarian cancer cell invasion.
Collapse
Affiliation(s)
| | - Batool Mehdi
- Department of Biological Sciences, University of Toledo, Toledo, Ohio, USA
| | - Deborah N. Chadee
- Department of Biological Sciences, University of Toledo, Toledo, Ohio, USA
| |
Collapse
|
10
|
Harmych SJ, Kumar J, Bouni ME, Chadee DN. Nicotine inhibits MAPK signaling and spheroid invasion in ovarian cancer cells. Exp Cell Res 2020; 394:112167. [PMID: 32649943 DOI: 10.1016/j.yexcr.2020.112167] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/29/2020] [Accepted: 07/05/2020] [Indexed: 12/31/2022]
Abstract
Nicotine is the major addictive component of cigarette smoke and although it is not considered carcinogenic, it can enhance or inhibit cancer cell proliferation depending on the type of cancer. Nicotine mediates its effects through nicotinic acetylcholine receptors (nAChRs), which are expressed in many different neuronal and non-neuronal cell types. We observed that the nAChR α4, α5, α7 subunits were expressed in ovarian cancer (OC) cells. Nicotine inhibited the proliferation of SKOV3 and TOV112D OC cells, which have TP53 mutation and wild-type KRAS, but did not inhibit the proliferation of TOV21G or HEY OC cells, which have KRAS mutation and wild-type TP53. Exposure to nicotine for 96 h led to a significant reduction in the amounts of activated extracellular signal-regulated kinase (ERK) and activated p38 mitogen-activated protein kinases (MAPKs) in SKOV3 cells, and in activated ERK in TOV112D cells. In addition, SKOV3 and TOV112D invasion and spheroid formation were substantially inhibited by siRNA knockdown of mixed lineage kinase 3 (MLK3), or MEK inhibition. Nicotine treatment reduced SKOV3 and TOV112D spheroid invasion and compaction but did not significantly affect spheroid formation. Furthermore, SKOV3 spheroid invasion was blocked by p38 inhibition with SB202190, but not by MEK inhibition with U0126; whereas TOV112D spheroid invasion was reduced by MEK inhibition, but not by p38 inhibition. These results indicate that nicotine can suppress spheroid invasion and compaction as well as proliferation in SKOV3 and TOV112D OC cells; and p38 and ERK MAPK signaling pathways are important mediators of these responses.
Collapse
Affiliation(s)
- Sarah J Harmych
- Department of Biological Sciences, University of Toledo, 2801 West Bancroft Street, MS601, Toledo, OH, 43606, USA
| | - Jay Kumar
- Department of Biological Sciences, University of Toledo, 2801 West Bancroft Street, MS601, Toledo, OH, 43606, USA
| | - Mesa E Bouni
- Department of Biological Sciences, University of Toledo, 2801 West Bancroft Street, MS601, Toledo, OH, 43606, USA
| | - Deborah N Chadee
- Department of Biological Sciences, University of Toledo, 2801 West Bancroft Street, MS601, Toledo, OH, 43606, USA.
| |
Collapse
|
11
|
Niu ZS, Wang WH, Dong XN, Tian LML. Role of long noncoding RNA-mediated competing endogenous RNA regulatory network in hepatocellular carcinoma. World J Gastroenterol 2020; 26:4240-4260. [PMID: 32848331 PMCID: PMC7422540 DOI: 10.3748/wjg.v26.i29.4240] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 07/05/2020] [Accepted: 07/15/2020] [Indexed: 02/06/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) and microRNAs (miRNAs) are noncoding RNAs (ncRNAs) that occupy over 90% of the human genome, and their main function is to directly or indirectly regulate messenger RNA (mRNA) expression and participate in the tumorigenesis and progression of malignances. In particular, some lncRNAs can interact with miRNAs as competing endogenous RNAs (ceRNAs) to modulate mRNA expression. Accordingly, these RNA molecules are interrelated and coordinate to form a dynamic lncRNA-mediated ceRNA regulatory network. Mounting evidence has revealed that lncRNAs that act as ceRNAs are closely related to tumorigenesis. To date, numerous studies have established many different regulatory networks in hepatocellular carcinoma (HCC), and perturbations in these ceRNA interactions may result in the initiation and progression of HCC. Herein, we emphasize recent advances concerning the biological function of lncRNAs as ceRNAs in HCC, with the aim of elucidating the molecular mechanism underlying these HCC-related RNA molecules and providing novel insights into the diagnosis and treatment of HCC.
Collapse
Affiliation(s)
- Zhao-Shan Niu
- Laboratory of Micromorphology, School of Basic Medicine, Medical Department of Qingdao University, Qingdao 266071, Shandong Province, China
| | - Wen-Hong Wang
- Department of Pathology, School of Basic Medicine, Medical Department of Qingdao University, Qingdao 266071, Shandong Province, China
| | - Xian-Ning Dong
- Department of Pathology, the Affiliated Hospital of Qingdao University, Qingdao 266061, Shandong Province, China
| | - Li-Mei-Li Tian
- BGI Gene Innovation Class, School of Basic Medicine, Medical Department of Qingdao University, Qingdao 266071, Shandong Province, China
| |
Collapse
|
12
|
Gallo KA, Ellsworth E, Stoub H, Conrad SE. Therapeutic potential of targeting mixed lineage kinases in cancer and inflammation. Pharmacol Ther 2019; 207:107457. [PMID: 31863814 DOI: 10.1016/j.pharmthera.2019.107457] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 12/12/2019] [Indexed: 12/12/2022]
Abstract
Dysregulation of intracellular signaling pathways is a key attribute of diseases associated with chronic inflammation, including cancer. Mitogen activated protein kinases have emerged as critical conduits of intracellular signal transmission, yet due to their ubiquitous roles in cellular processes, their direct inhibition may lead to undesired effects, thus limiting their usefulness as therapeutic targets. Mixed lineage kinases (MLKs) are mitogen-activated protein kinase kinase kinases (MAP3Ks) that interact with scaffolding proteins and function upstream of p38, JNK, ERK, and NF-kappaB to mediate diverse cellular signals. Studies involving gene silencing, genetically engineered mouse models, and small molecule inhibitors suggest that MLKs are critical in tumor progression as well as in inflammatory processes. Recent advances indicate that they may be useful targets in some types of cancer and in diseases driven by chronic inflammation including neurodegenerative diseases and metabolic diseases such as nonalcoholic steatohepatitis. This review describes existing MLK inhibitors, the roles of MLKs in various aspects of tumor progression and in the control of inflammatory processes, and the potential for therapeutic targeting of MLKs.
Collapse
Affiliation(s)
- Kathleen A Gallo
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA; Cell and Molecular Biology Program, Michigan State University, East Lansing, MI 48824, USA.
| | - Edmund Ellsworth
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA
| | - Hayden Stoub
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | - Susan E Conrad
- Cell and Molecular Biology Program, Michigan State University, East Lansing, MI 48824, USA; Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
13
|
Mixed – Lineage Protein kinases (MLKs) in inflammation, metabolism, and other disease states. Biochim Biophys Acta Mol Basis Dis 2016; 1862:1581-6. [DOI: 10.1016/j.bbadis.2016.05.022] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 05/26/2016] [Accepted: 05/27/2016] [Indexed: 02/06/2023]
|
14
|
Luo L, Jiang S, Huang D, Lu N, Luo Z. MLK3 phophorylates AMPK independently of LKB1. PLoS One 2015; 10:e0123927. [PMID: 25874865 PMCID: PMC4395454 DOI: 10.1371/journal.pone.0123927] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 03/09/2015] [Indexed: 11/19/2022] Open
Abstract
Emerging evidence has shown that cellular energy metabolism is regulated by the AMPK and MLK3-JNK signaling pathways, but the functional link between them remains to be determined. The present study aimed to explore the crosstalk between MLK3 and AMPK. We found that both JNK and AMPK were phosphorylated at their activation sites by TNF-α, Anisomycin, H2O2 and sorbitol. Interestingly, sorbitol stimulated phosphorylation of AMPK at T172 in LKB1-deficient cells. Following the screening of more than 100 kinases, we identified that MLK3 induced phosphorylation of AMPK at T172. Our in vitro analysis further revealed that MLK3-mediated phosphorylation of AMPK at T172 was independent of AMP, but addition of AMP caused a mobility shift of AMPK, an indication of autophosphorylation, suggesting that AMP binding and phosphorylation of T172 leads to maximal activation of AMPK. GST-pull down assays showed a direct interaction between AMPKα1 subunit and MLK3. Altogether, our results indicate that MLK3 serves as a common upstream kinase of AMPK and JNK and functions as a direct upstream kinase for AMPK independent of LKB1.
Collapse
Affiliation(s)
- Lingyu Luo
- Research Institute of Digestive Diseases, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Shanshan Jiang
- Graduate Program, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Deqiang Huang
- Research Institute of Digestive Diseases, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Nonghua Lu
- Research Institute of Digestive Diseases, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Zhijun Luo
- Institute of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi, 330006, China
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, 02118, United States of America
| |
Collapse
|