1
|
Nunes EA, D'Souza AC, Steen JP, Phillips SM. Lack of evidence for Omega-3 fatty acid supplementation in enhancing lean mass, muscle strength, and physical function in healthy adults and clinical populations: An overview of reviews. Clin Nutr ESPEN 2025; 67:155-165. [PMID: 40089061 DOI: 10.1016/j.clnesp.2025.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 02/24/2025] [Accepted: 03/10/2025] [Indexed: 03/17/2025]
Abstract
BACKGROUND & AIMS N-3 (omega-3) polyunsaturated fatty acids (n-3-PUFA) have been hypothesized to enhance/maintain skeletal muscle mass, strength, and physical function. We conducted an overview of reviews of n-3 fatty acid monotherapy supplementation and examined whether the evidence supports the effects in healthy young and old adults and clinical populations. METHODS In line with the PRISMA guidelines, a widely accepted framework for conducting and reporting systematic reviews, we conducted a comprehensive search for systematic reviews (OVID, Embase, Web of Science, SPORTDiscus) reporting the effect of n-3 fatty acid supplementation in our target populations. To ensure the reliability and validity of our findings, the methodological quality of the reviews was assessed using A Measurement Tool to Assess Systematic Reviews (AMSTAR) 1, a validated tool for appraising the methodological quality of systematic reviews. RESULTS Thirty-three systematic reviews met our inclusion criteria: 19 non-oncologic, 11 oncologic, and 3 mixed. In non-oncologic populations, 4 out of 16 reviews showed some evidence that n-3-PUFA supplementation benefitted lean mass, with 3 reviews focusing on older populations. For strength, 1 out of 14 reviews found sufficient evidence in favor, while 3 others reported some evidence of n-3-PUFA ingestion. For physical function, 1 out of 15 reviews found sufficient evidence, and 3 reported some evidence favoring n-3-PUFA use. In oncologic participants, only 1 out of 13 reviews found sufficient evidence that n-3-PUFA improved lean mass. No reviews found sufficient evidence for strength or physical function improvements. CONCLUSIONS Our analysis indicates limited evidence supporting the effectiveness of n-3-PUFA supplementation in both younger and older healthy adults, as well as clinical populations including oncologic patients, to improve or prevent loss of lean mass. Most systematic reviews concluded that n-3-PUFA supplementation did not significantly affect strength, or studies were inconclusive, and there was no consistent impact of n-3-PUFA supplementation on functional outcome measures. These findings underscore the need for further research to better understand the role of n-3-PUFA in muscle health and to guide clinical practice. Our analysis does not support n-3-PUFA monotherapy for lean mass gain/retention enhancing strength or function in healthy young and older persons, and oncologic populations.
Collapse
|
2
|
Hawley AL, Baum JI. Nutrition as the foundation for successful aging: a focus on dietary protein and omega-3 polyunsaturated fatty acids. Nutr Rev 2024; 82:389-406. [PMID: 37319363 DOI: 10.1093/nutrit/nuad061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023] Open
Abstract
Skeletal muscle plays a critical role throughout the aging process. People living with sarcopenia, a progressive and generalized loss of skeletal muscle mass and function, often experience diminished quality of life, which can be attributed to a long period of decline and disability. Therefore, it is important to identify modifiable factors that preserve skeletal muscle and promote successful aging (SA). In this review, SA was defined as (1) low cardiometabolic risk, (2) preservation of physical function, and (3) positive state of wellbeing, with nutrition as an integral component. Several studies identify nutrition, specifically high-quality protein (eg, containing all essential amino acids), and long-chain omega-3 polyunsaturated fatty acids (n-3 PUFAs), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA), as positive regulators of SA. Recently, an additive anabolic effect of protein and n-3 PUFAs has been identified in skeletal muscle of older adults. Evidence further suggests that the additive effect of protein and n-3 PUFAs may project beyond skeletal muscle anabolism and promote SA. The key mechanism(s) behind the enhanced effects of intake of protein and n-3 PUFAs needs to be defined. The first objective of this review is to evaluate skeletal muscle as a driver of cardiometabolic health, physical function, and wellbeing to promote SA. The second objective is to examine observational and interventional evidence of protein and n-3 PUFAs on skeletal muscle to promote SA. The final objective is to propose mechanisms by which combined optimal intake of high-quality protein and n-3 PUFAs likely play a key role in SA. Current evidence suggests that increased intake of protein above the Recommended Dietary Allowance and n-3 PUFAs above the Dietary Guidelines for Americans recommendations for late middle-aged and older adults is required to maintain skeletal muscle mass and to promote SA, potentially through the mechanistical target of rapamycin complex 1 (mTORC1).
Collapse
Affiliation(s)
- Aubree L Hawley
- School of Human and Environmental Sciences, University of Arkansas, Fayetteville, AR, USA
| | - Jamie I Baum
- Center for Human Nutrition, Department of Food Science, University of Arkansas System Division of Agriculture, Fayetteville, AR, USA
| |
Collapse
|
3
|
Santo André HC, Esteves GP, Barreto GHC, Longhini F, Dolan E, Benatti FB. The Influence of n-3PUFA Supplementation on Muscle Strength, Mass, and Function: A Systematic Review and Meta-Analysis. Adv Nutr 2023; 14:115-127. [PMID: 36811583 PMCID: PMC10103001 DOI: 10.1016/j.advnut.2022.11.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/08/2022] [Accepted: 11/23/2022] [Indexed: 12/25/2022] Open
Abstract
The effects of omega 3 polyunsaturated fatty acids (n-3PUFA) supplementation on skeletal muscle are currently unclear. The purpose of this systematic review was to synthesize all available evidence regarding the influence of n-3PUFA supplementation on muscle mass, strength, and function in healthy young and older adults. Four databases were searched (Medline, Embase, Cochrane CENTRAL, and SportDiscus). Predefined eligibility criteria were determined according to Population, Intervention, Comparator, Outcomes, and Study Design. Only peer-reviewed studies were included. The Cochrane RoB2 Tool and the NutriGrade approach were used to access risk of bias and certainty in evidence. Effect sizes were calculated using pre-post scores and analyzed using a three-level, random-effects meta-analysis. When sufficient studies were available, subanalyses were performed in the muscle mass, strength, and function outcomes according to participant's age (<60 or ≥60 years), supplementation dosage (<2 or ≥2 g/day), and training intervention ("resistance training" vs. "none or other"). Overall, 14 individual studies were included, total 1443 participants (913 females; 520 males) and 52 outcomes measures. Studies had high overall risk of bias and consideration of all NutriGrade elements resulted in a certainty assessment of moderate meta-evidence for all outcomes. n-3PUFA supplementation had no significant effect on muscle mass (standard mean difference [SMD] = 0.07 [95% CI: -0.02, 0.17], P = 0.11) and muscle function (SMD = 0.03 [95% CI: -0.09, 0.15], P = 0.58), but it showed a very small albeit significant positive effect on muscle strength (SMD = 0.12 [95% CI: 0.006, 0.24], P = 0.04) in participants when compared with placebo. Subgroup analyses showed that age, supplementation dose, or cosupplementation alongside resistance training did not influence these responses. In conclusion, our analyses indicated that n-3PUFA supplementation may lead to very small increases in muscle strength but did not impact muscle mass and function in healthy young and older adults. To our knowledge, this is the first review and meta-analysis investigating whether n-3PUFA supplementation can lead to increases in muscle strength, mass, and function in healthy adults. Registered protocol: doi.org/10.17605/OSF.IO/2FWQT.
Collapse
Affiliation(s)
| | - Gabriel P Esteves
- Applied Physiology & Nutrition Research Group, Rheumatology Division, Faculdade de Medicina FMUSP, University of São Paulo, São Paulo, SP, Brazil
| | - Gabriel H C Barreto
- Applied Physiology & Nutrition Research Group, Rheumatology Division, Faculdade de Medicina FMUSP, University of São Paulo, São Paulo, SP, Brazil
| | - Fernando Longhini
- School of Applied Science (FCA), State University of Campinas, Limeira, SP, Brazil
| | - Eimear Dolan
- Applied Physiology & Nutrition Research Group, Rheumatology Division, Faculdade de Medicina FMUSP, University of São Paulo, São Paulo, SP, Brazil
| | - Fabiana B Benatti
- School of Applied Science (FCA), State University of Campinas, Limeira, SP, Brazil; Applied Physiology & Nutrition Research Group, Rheumatology Division, Faculdade de Medicina FMUSP, University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
4
|
Effects of calorie restriction with n-3 long-chain polyunsaturated fatty acids on metabolic syndrome severity in obese subjects: A randomize-controlled trial. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.01.040] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
5
|
Cook TM, Russell JM, Barker ME. Dietary advice for muscularity, leanness and weight control in Men's Health magazine: a content analysis. BMC Public Health 2014; 14:1062. [PMID: 25304148 PMCID: PMC4198727 DOI: 10.1186/1471-2458-14-1062] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 10/03/2014] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND The dietary content of advice in men's lifestyle magazines has not been closely scrutinised. METHODS We carried out an analysis of such content in all 2009 issues (n = 11) of Men's Health (MH) focusing on muscularity, leanness and weight control. RESULTS Promotion of a mesomorphic body image underpinned advice to affect muscle building and control weight. Diet advice was underpinned by a strong pseudo-scientific discourse, with citation of expert sources widely used to legitimise the information. Frequently multiple dietary components were advocated within one article e.g. fat, omega-3 fatty acids, thiamine, zinc and high-glycaemic index foods. Furthermore advice would cover numerous nutritional effects, e.g. strengthening bones, reducing stress and boosting testosterone, with little contextualisation. The emphasis on attainment of a mesomorphic body image permitted promotion of slimming diets.Advice to increase calorie and protein intake to augment muscle mass was frequent (183 and 262 references, respectively). Such an anabolic diet was advised in various ways, including consumption of traditional protein foods (217 references) and sports foods (107 references), thereby replicating muscle magazines' support for nutritional supplements. Although advice to increase consumption of red meat was common (52 references), fish and non-flesh sources of protein (eggs, nuts & pulses, and soy products) together exceeded red meat in number of recommendations (206 references). Advice widely asserted micronutrients and phytochemicals from plant food (161 references) as being important in muscle building. This emphasis diverges from stereotypical gender-based food consumption patterns.Dietary advice for control of body weight largely replicated that of muscularity, with strong endorsement to consume fruits and vegetables (59 references), diets rich in nuts and pulses and fish (66 references), as well as specific micronutrients and phytochemicals (62 references). Notably there was emphasis on fat-burning, good fats and consumption of single foods, with relatively little mention of dietary restriction. CONCLUSIONS Despite the widespread use of scientific information to endorse dietary advice, the content, format and scientific basis of dietary content of MH leaves much to be desired. The dietary advice as provided may not be conducive to public health.
Collapse
Affiliation(s)
- Toni M Cook
- />Human Nutrition Unit, Department of Oncology, School of Medicine, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX UK
| | - Jean M Russell
- />Corporate Information and Computing Services, University of Sheffield, 10-12 Brunswick Street, Sheffield, S10 2FN UK
| | - Margo E Barker
- />Human Nutrition Unit, Department of Oncology, School of Medicine, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX UK
| |
Collapse
|
6
|
The muscle mass, omega-3, diet, exercise and lifestyle (MODEL) study - a randomised controlled trial for women who have completed breast cancer treatment. BMC Cancer 2014; 14:264. [PMID: 24739260 PMCID: PMC4006632 DOI: 10.1186/1471-2407-14-264] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 03/26/2014] [Indexed: 02/01/2023] Open
Abstract
Background Loss of lean body mass (LBM) is a common occurrence after treatment for breast cancer and is related to deleterious metabolic health outcomes [Clin Oncol, 22(4):281–288, 2010; Appl Physiol Nutr Metab, 34(5):950–956, 2009]. The aim of this research is to determine the effectiveness of long chain omega-3 fatty acids (LCn-3s) and exercise training alone, or in combination, in addressing LBM loss in breast cancer survivors. Methods/design A total of 153 women who have completed treatment for breast cancer in the last 12 months, with a Body Mass Index (BMI) of 20 to 35 kg/m2, will be randomly assigned to one of 3 groups: 3g/d LCn-3s (N-3), a 12-week nutrition and exercise education program plus olive oil (P-LC) or the education program plus LCn-3s (EX+N-3). Participants randomised to the education groups will be blinded to treatment, and will receive either olive oil placebo (OO+N-3) or LCn-3 provision, while the N-3 group will be open label. The education program includes nine 60-75min sessions over 12 weeks that will involve breast cancer specific healthy eating advice, plus a supervised exercise session run as a resistance exercise circuit. They will also be advised to conduct the resistance training and aerobic training 5 to 7 days per week collectively. Outcome measures will be taken at baseline, 12-weeks and 24-weeks. The primary outcome is % change in LBM as measured by the air displacement plethysmograhy. Secondary outcomes include quality of life (FACT-B + 4) and inflammation (C-Reactive protein: CRP). Additional measures taken will be erythrocyte fatty acid analysis, fatigue, physical activity, menopausal symptoms, dietary intake, joint pain and function indices. Discussion This research will provide the first insight into the efficacy of LCn-3s alone or in combination with exercise in breast cancer survivors with regards to LBM and quality of life. In addition, this study is designed to improve evidence-based dietetic practice, and how specific dietary prescription may link with appropriate exercise interventions. Trials registration ACTRN12610001005044; and World Health Organisation Universal trial number:
U1111-1116-8520.
Collapse
|
7
|
Meher A, Joshi A, Joshi S. Differential regulation of hepatic transcription factors in the Wistar rat offspring born to dams fed folic acid, vitamin B12 deficient diets and supplemented with omega-3 fatty acids. PLoS One 2014; 9:e90209. [PMID: 24587285 PMCID: PMC3938654 DOI: 10.1371/journal.pone.0090209] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 01/30/2014] [Indexed: 12/19/2022] Open
Abstract
Nutritional status of the mother is known to influence various metabolic adaptations required for optimal fetal development. These may be mediated by transcription factors like peroxisome proliferator activated receptors (PPARs), which are activated by long chain polyunsaturated fatty acids. The objective of the current study was to examine the expression of different hepatic transcription factors and the levels of global methylation in the liver of the offspring born to dams fed micronutrient deficient (folic acid and vitamin B12) diets and supplemented with omega-3 fatty acids. Female rats were divided into five groups (n = 8/group) as follows; control, folic acid deficient (FD), vitamin B12 deficient (BD) and omega-3 fatty acid supplemented groups (FDO and BDO). Diets were given starting from pre-conception and continued throughout pregnancy and lactation. Pups were dissected at the end of lactation. Liver tissues were removed; snap frozen and stored at −80°C. Maternal micronutrients deficiency resulted in lower (p<0.05) levels of pup liver docosahexaenoic acid (DHA) and arachidonic acid (ARA) as compared to the control group. Pup liver PPARα and PPARγ expression was lower (p<0.05) in the BD group although there were no differences in the expression of SREBP-1c, LXRα and RXRα expression. Omega-3 fatty acids supplementation to this group normalized (p<0.05) levels of both PPARα and PPARγ but reduced (p<0.05) SREBP-1c, LXRα and RXRα expression. There was no change in any of the transcription factors in the pup liver in the FD group. Omega-3 fatty acids supplementation to this group reduced (p<0.05) PPARα, SREBP-1c and RXRα expression. Pup liver global methylation levels were higher (p<0.01) in both the micronutrients deficient groups and could be normalized (p<0.05) by omega-3 fatty acid supplementation. Our novel findings suggest a role for omega-3 fatty acids in the one carbon cycle in influencing the hepatic expression of transcription factors in the offspring.
Collapse
Affiliation(s)
- Akshaya Meher
- Department of Nutritional Medicine, Interactive Research School for Health Affairs, Bharati Vidyapeeth University, Pune, Maharashtra, India
| | - Asmita Joshi
- Department of Nutritional Medicine, Interactive Research School for Health Affairs, Bharati Vidyapeeth University, Pune, Maharashtra, India
| | - Sadhana Joshi
- Department of Nutritional Medicine, Interactive Research School for Health Affairs, Bharati Vidyapeeth University, Pune, Maharashtra, India
| |
Collapse
|
8
|
McDonald C, Bauer J, Capra S, Waterhouse M. Muscle function and omega-3 fatty acids in the prediction of lean body mass after breast cancer treatment. SPRINGERPLUS 2014; 2:681. [PMID: 24404435 PMCID: PMC3882342 DOI: 10.1186/2193-1801-2-681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 11/08/2013] [Indexed: 12/04/2022]
Abstract
Background Decreased lean body mass (LBM) is common in breast cancer survivors yet currently there is a lack of information regarding the determinants of LBM after treatment, in particular, the effect of physical activity and dietary factors, such as long-chain omega-3 fatty acids (LCn-3) on LBM and LBM function. This cross-sectional study explored associations of LBM and function with LCn-3 intake, dietary intake, inflammation, quality of life (QOL) and physical fitness in breast cancer survivors to improve clinical considerations when addressing body composition change. Methods Forty-nine women who had completed treatment (surgery, radiation and/or chemotherapy) were assessed for body composition (BODPOD), LCn-3 content of erythrocytes, C-reactive protein (CRP), QOL, dietary intake, objective physical activity, 1-min push-ups, 1-min sit-stand, sub-maximal treadmill (TM) test, and handgrip strength. Results After adjustment for age, LBM was associated with push-ups (r = 0.343, p = 0.000), stage reached on treadmill (StageTM) (r = 0.302, 0.001), % time spent ≥ moderate activity (Mod + Vig) (r = 0.228, p = 0.024). No associations were seen between anthropometric values and any treatment, diagnostic and demographical variables. Body mass, push-ups and StageTM accounted for 76.4% of the variability in LBM (adjusted r-square: 0.764, p = 0.000). After adjustment docosahexanoic acid (DHA) was positively associated with push-ups (β=0.399, p = 0.001), eicosapentanoic acid (EPA) was negatively associated with squats (r = −0.268, p = 0.041), with no other significant interactions found between LCn-3 and physical activity for LBM or LBM function. Conclusion This is the first investigation to report that a higher weight adjusted LBM is associated with higher estimated aerobic fitness and ability to perform push-ups in breast cancer survivors. Potential LCn-3 and physical activity interactions on LBM require further exploration.
Collapse
Affiliation(s)
| | - Judy Bauer
- University of Queensland, Brisbane, 4059 Australia
| | - Sandra Capra
- University of Queensland, Brisbane, 4059 Australia
| | | |
Collapse
|