1
|
Husti Z, Varró A, Baczkó I. Arrhythmogenic Remodeling in the Failing Heart. Cells 2021; 10:cells10113203. [PMID: 34831426 PMCID: PMC8623396 DOI: 10.3390/cells10113203] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/05/2021] [Accepted: 11/11/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic heart failure is a clinical syndrome with multiple etiologies, associated with significant morbidity and mortality. Cardiac arrhythmias, including ventricular tachyarrhythmias and atrial fibrillation, are common in heart failure. A number of cardiac diseases including heart failure alter the expression and regulation of ion channels and transporters leading to arrhythmogenic electrical remodeling. Myocardial hypertrophy, fibrosis and scar formation are key elements of arrhythmogenic structural remodeling in heart failure. In this article, the mechanisms responsible for increased arrhythmia susceptibility as well as the underlying changes in ion channel, transporter expression and function as well as alterations in calcium handling in heart failure are discussed. Understanding the mechanisms of arrhythmogenic remodeling is key to improving arrhythmia management and the prevention of sudden cardiac death in patients with heart failure.
Collapse
Affiliation(s)
- Zoltán Husti
- Department of Pharmacology and Pharmacotherapy, University of Szeged, 6720 Szeged, Hungary; (Z.H.); (A.V.)
- Department of Pharmacology and Pharmacotherapy, Interdisciplinary Excellence Centre, University of Szeged, 6720 Szeged, Hungary
| | - András Varró
- Department of Pharmacology and Pharmacotherapy, University of Szeged, 6720 Szeged, Hungary; (Z.H.); (A.V.)
- Department of Pharmacology and Pharmacotherapy, Interdisciplinary Excellence Centre, University of Szeged, 6720 Szeged, Hungary
- ELKH-SZTE Research Group for Cardiovascular Pharmacology, Eötvös Loránd Research Network, 6720 Szeged, Hungary
| | - István Baczkó
- Department of Pharmacology and Pharmacotherapy, University of Szeged, 6720 Szeged, Hungary; (Z.H.); (A.V.)
- Department of Pharmacology and Pharmacotherapy, Interdisciplinary Excellence Centre, University of Szeged, 6720 Szeged, Hungary
- Correspondence:
| |
Collapse
|
2
|
Baczkó I, Hornyik T, Brunner M, Koren G, Odening KE. Transgenic Rabbit Models in Proarrhythmia Research. Front Pharmacol 2020; 11:853. [PMID: 32581808 PMCID: PMC7291951 DOI: 10.3389/fphar.2020.00853] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 05/22/2020] [Indexed: 12/23/2022] Open
Abstract
Drug-induced proarrhythmia constitutes a potentially lethal side effect of various drugs. Most often, this proarrhythmia is mechanistically linked to the drug's potential to interact with repolarizing cardiac ion channels causing a prolongation of the QT interval in the ECG. Despite sophisticated screening approaches during drug development, reliable prediction of proarrhythmia remains very challenging. Although drug-induced long-QT-related proarrhythmia is often favored by conditions or diseases that impair the individual's repolarization reserve, most cellular, tissue, and whole animal model systems used for drug safety screening are based on normal, healthy models. In recent years, several transgenic rabbit models for different types of long QT syndromes (LQTS) with differences in the extent of impairment in repolarization reserve have been generated. These might be useful for screening/prediction of a drug's potential for long-QT-related proarrhythmia, particularly as different repolarizing cardiac ion channels are impaired in the different models. In this review, we summarize the electrophysiological characteristics of the available transgenic LQTS rabbit models, and the pharmacological proof-of-principle studies that have been performed with these models—highlighting the advantages and disadvantages of LQTS models for proarrhythmia research. In the end, we give an outlook on potential future directions and novel models.
Collapse
Affiliation(s)
- István Baczkó
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - Tibor Hornyik
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary.,Department of Cardiology and Angiology I, Heart Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Michael Brunner
- Department of Cardiology and Angiology I, Heart Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Cardiology and Medical Intensive Care, St. Josefskrankenhaus, Freiburg, Germany
| | - Gideon Koren
- Cardiovascular Research Center, Division of Cardiology, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI, United States
| | - Katja E Odening
- Department of Cardiology and Angiology I, Heart Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Translational Cardiology, Department of Cardiology, Inselspital, Bern University Hospital, Bern, Switzerland.,Institute of Physiology, University of Bern, Bern, Switzerland
| |
Collapse
|
3
|
Hagiwara M, Shibuta S, Takada K, Kambayashi R, Nakajo M, Aimoto M, Nagasawa Y, Takahara A. The anaesthetized rabbit with acute atrioventricular block provides a new model for detecting drug-induced Torsade de Pointes. Br J Pharmacol 2017; 174:2591-2605. [PMID: 28547743 DOI: 10.1111/bph.13870] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 05/03/2017] [Accepted: 05/04/2017] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND AND PURPOSE Several rabbit proarrhythmia models have been developed using genetic or pharmacological methods to suppress the slow component of delayed rectifier K+ currents in the ventricle, leading to reduction of the repolarization reserve. Here we have characterized a novel rabbit in vivo proarrhythmia model with severe bradycardia caused by acute atrioventricular block (AVB). EXPERIMENTAL APPROACH Bradycardia was induced in isoflurane-anaesthetized rabbits by inducing AVB with catheter ablation, and the ventricle was electrically driven at 60 beats min-1 throughout the experiment except when extrasystoles appeared. We assessed the effects of two antiarrhythmics, two quinolone antibiotics and one antipsychotic drug, which were chosen as positive drugs (dofetilide, sparfloxacin and haloperidol) and negative drugs (amiodarone and moxifloxacin) for induction of Torsades de Pointes (TdP). KEY RESULTS In our model, TdP arrhythmias appeared with high reproducibility after i.v. dofetilide (10-100 μg·kg-1 ) in five out of six rabbits, sparfloxacin (30 mg·kg-1 ) in three out of six rabbits and haloperidol (0.3-3 mg·kg-1 ) in two out of six rabbits. The lethal arrhythmias repeatedly appeared and were accompanied with prolongation of the QT interval and early afterdepolarization-like phenomena. Neither amiodarone (0.3-10 mg·kg-1 , n = 6) nor moxifloxacin (3-30 mg·kg-1 , n = 6) induced such arrhythmias, even when QT intervals were prolonged. CONCLUSIONS AND IMPLICATIONS These results suggest that our model of the unremodelled and bradycardic heart of the anaesthetized rabbit is a useful test system for the detection of drug-induced TdP arrhythmias.
Collapse
Affiliation(s)
- Mihoko Hagiwara
- Department of Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, Toho University, Chiba, Japan
| | - Seiji Shibuta
- Department of Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, Toho University, Chiba, Japan
| | - Kazuhiro Takada
- Department of Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, Toho University, Chiba, Japan
| | - Ryuichi Kambayashi
- Department of Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, Toho University, Chiba, Japan
| | - Misako Nakajo
- Department of Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, Toho University, Chiba, Japan
| | - Megumi Aimoto
- Department of Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, Toho University, Chiba, Japan
| | - Yoshinobu Nagasawa
- Department of Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, Toho University, Chiba, Japan
| | - Akira Takahara
- Department of Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, Toho University, Chiba, Japan
| |
Collapse
|
4
|
Osadchii OE. Role of abnormal repolarization in the mechanism of cardiac arrhythmia. Acta Physiol (Oxf) 2017; 220 Suppl 712:1-71. [PMID: 28707396 DOI: 10.1111/apha.12902] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In cardiac patients, life-threatening tachyarrhythmia is often precipitated by abnormal changes in ventricular repolarization and refractoriness. Repolarization abnormalities typically evolve as a consequence of impaired function of outward K+ currents in cardiac myocytes, which may be caused by genetic defects or result from various acquired pathophysiological conditions, including electrical remodelling in cardiac disease, ion channel modulation by clinically used pharmacological agents, and systemic electrolyte disorders seen in heart failure, such as hypokalaemia. Cardiac electrical instability attributed to abnormal repolarization relies on the complex interplay between a provocative arrhythmic trigger and vulnerable arrhythmic substrate, with a central role played by the excessive prolongation of ventricular action potential duration, impaired intracellular Ca2+ handling, and slowed impulse conduction. This review outlines the electrical activity of ventricular myocytes in normal conditions and cardiac disease, describes classical electrophysiological mechanisms of cardiac arrhythmia, and provides an update on repolarization-related surrogates currently used to assess arrhythmic propensity, including spatial dispersion of repolarization, activation-repolarization coupling, electrical restitution, TRIaD (triangulation, reverse use dependence, instability, and dispersion), and the electromechanical window. This is followed by a discussion of the mechanisms that account for the dependence of arrhythmic vulnerability on the location of the ventricular pacing site. Finally, the review clarifies the electrophysiological basis for cardiac arrhythmia produced by hypokalaemia, and gives insight into the clinical importance and pathophysiology of drug-induced arrhythmia, with particular focus on class Ia (quinidine, procainamide) and Ic (flecainide) Na+ channel blockers, and class III antiarrhythmic agents that block the delayed rectifier K+ channel (dofetilide).
Collapse
Affiliation(s)
- O. E. Osadchii
- Department of Health Science and Technology; University of Aalborg; Aalborg Denmark
| |
Collapse
|
5
|
Arevalo HJ, Boyle PM, Trayanova NA. Computational rabbit models to investigate the initiation, perpetuation, and termination of ventricular arrhythmia. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2016; 121:185-94. [PMID: 27334789 DOI: 10.1016/j.pbiomolbio.2016.06.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 06/13/2016] [Indexed: 12/29/2022]
Abstract
Current understanding of cardiac electrophysiology has been greatly aided by computational work performed using rabbit ventricular models. This article reviews the contributions of multiscale models of rabbit ventricles in understanding cardiac arrhythmia mechanisms. This review will provide an overview of multiscale modeling of the rabbit ventricles. It will then highlight works that provide insights into the role of the conduction system, complex geometric structures, and heterogeneous cellular electrophysiology in diseased and healthy rabbit hearts to the initiation and maintenance of ventricular arrhythmia. Finally, it will provide an overview on the contributions of rabbit ventricular modeling on understanding the mechanisms underlying shock-induced defibrillation.
Collapse
Affiliation(s)
- Hermenegild J Arevalo
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA; Simula Research Laboratory, Oslo, Norway
| | - Patrick M Boyle
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Natalia A Trayanova
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
6
|
Baczkó I, Jost N, Virág L, Bősze Z, Varró A. Rabbit models as tools for preclinical cardiac electrophysiological safety testing: Importance of repolarization reserve. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2016; 121:157-68. [PMID: 27208697 DOI: 10.1016/j.pbiomolbio.2016.05.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 05/01/2016] [Indexed: 01/26/2023]
Abstract
It is essential to more reliably assess the pro-arrhythmic liability of compounds in development. Current guidelines for pre-clinical and clinical testing of drug candidates advocate the use of healthy animals/tissues and healthy individuals and focus on the test compound's ability to block the hERG current and prolong cardiac ventricular repolarization. Also, pre-clinical safety tests utilize several species commonly used in cardiac electrophysiological studies. In this review, important species differences in cardiac ventricular repolarizing ion currents are considered, followed by the discussion on electrical remodeling associated with chronic cardiovascular diseases that leads to altered ion channel and transporter expression and densities in pathological settings. We argue that the choice of species strongly influences experimental outcome and extrapolation of results to human clinical settings. We suggest that based on cardiac cellular electrophysiology, the rabbit is a useful species for pharmacological pro-arrhythmic investigations. In addition to healthy animals and tissues, the use of animal models (e.g. those with impaired repolarization reserve) is suggested that more closely resemble subsets of patients exhibiting increased vulnerability towards the development of ventricular arrhythmias and sudden cardiac death.
Collapse
Affiliation(s)
- István Baczkó
- Department of Pharmacology & Pharmacotherapy, University of Szeged, Dóm tér 12., 6720 Szeged, Hungary.
| | - Norbert Jost
- Department of Pharmacology & Pharmacotherapy, University of Szeged, Dóm tér 12., 6720 Szeged, Hungary; MTA-SZTE Research Group of Cardiovascular Pharmacology, Hungarian Academy of Sciences, Dóm tér 12., 6720 Szeged, Hungary
| | - László Virág
- Department of Pharmacology & Pharmacotherapy, University of Szeged, Dóm tér 12., 6720 Szeged, Hungary
| | - Zsuzsanna Bősze
- Rabbit Genome and Biomodel Group, NARIC-Agricultural Biotechnology Institute, 2100 Gödöllő, Hungary
| | - András Varró
- Department of Pharmacology & Pharmacotherapy, University of Szeged, Dóm tér 12., 6720 Szeged, Hungary; MTA-SZTE Research Group of Cardiovascular Pharmacology, Hungarian Academy of Sciences, Dóm tér 12., 6720 Szeged, Hungary
| |
Collapse
|
7
|
Baczkó I, Jost N, Varró A. Cardioprotection and arrhythmias, Part I. Can J Physiol Pharmacol 2015; 93:v. [PMID: 26444056 DOI: 10.1139/cjpp-2015-0198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- István Baczkó
- a Department of Pharmacology and Pharmacotherapy, University of Szeged, Hungary
| | - Norbert Jost
- b Department of Pharmacology and Pharmacotherapy, University of Szeged, Hungary and MTA-SZTE Research Group of Cardiovascular Pharmacology, Hungarian Academy of Sciences, Szeged, Hungary
| | - András Varró
- b Department of Pharmacology and Pharmacotherapy, University of Szeged, Hungary and MTA-SZTE Research Group of Cardiovascular Pharmacology, Hungarian Academy of Sciences, Szeged, Hungary
| |
Collapse
|