1
|
Mai Y, Xu S, Shen R, Feng B, He H, Xu Y. Gastroprotective effects of water extract of domesticated Amauroderma rugosum against several gastric ulcer models in rats. PHARMACEUTICAL BIOLOGY 2022; 60:600-608. [PMID: 35277113 PMCID: PMC8920396 DOI: 10.1080/13880209.2022.2047210] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 12/09/2021] [Accepted: 02/22/2022] [Indexed: 05/11/2023]
Abstract
CONTEXT Amauroderma rugosum (Blume & T. Nees) Torrend (Ganodermataceae) is an edible mushroom with medicinal properties. However, the effects of A. rugosum on gastric ulcer remain unclear. OBJECTIVE To investigate the gastroprotective efficacy of water extract of A. rugosum (WEA) on gastric ulcer. MATERIALS AND METHODS Sprague-Dawley rats were randomly grouped as control, model, lansoprazole and 200, 100 and 50 mg/kg of WEA. After pre-treatment for seven days, ethanol- and indomethacin-induced gastric ulcer models were established. The gastric ulcer and histopathology were investigated. Enzyme-linked immunosorbent assay (ELISA), quantitative polymerase chain reaction (Q-PCR) and Western blot assays were conducted to explore the potential anti-inflammatory effect and mechanism of WEA. Additionally, the pyloric ligation model was used to explore the influence of WEA on gastric acid and mucus. RESULTS Pre-treatment with WEA (200, 100 and 50 mg/kg) effectively reduced ulcerous area in both ethanol-induced (71%, 88% and 71%) and indomethacin-induced (77%, 65% and 86%) gastric ulcer model. The gastric levels of tumour necrosis factor-alpha (TNF-α) (34% and 50 mg/kg), interleukin-6 (IL-6) (32% and 100 mg/kg) and interleukin-1β (IL-1β) (36%, 45% and 41%) were reduced significantly (p < 0.05) by WEA. Serum nitric oxide was decreased significantly (p < 0.05) at 200 and 50 mg/kg and PGE2 concentration was increased remarkably (p < 0.05) at 100 mg/kg. Gene expression of inflammasome Nlrp3, and the nuclear translocation of nuclear factor-κB (NF-κB) P65 were significantly decreased by WEA pre-treatment. However, the pH of gastric acid and secretion of mucus did not show any significant change. CONCLUSIONS The gastroprotective effect of WEA on gastric damage is attributed to anti-inflammation through the inhibition on NF-κB P65 nuclear migration and Nlrp3 gene expression.
Collapse
Affiliation(s)
- Yanzhen Mai
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
- Huizhou Health Sciences Polytechnic, Huizhou, China
| | - Siyuan Xu
- Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Ru Shen
- Huizhou Health Sciences Polytechnic, Huizhou, China
| | - Bairu Feng
- Huizhou Health Sciences Polytechnic, Huizhou, China
| | - Hong He
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yifei Xu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
- Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| |
Collapse
|
2
|
Bao T, Feng L, Cho S, Yu H, Jin W, Dai L, Zhang J, Bai L, Fu M, Chen Y. RNA-Seq Reveals Protective Mechanisms of Mongolian Medicine Molor-Dabos-4 on Acute Indomethacin-Induced Gastric Ulcers in Rats. Genes (Basel) 2022; 13:genes13101740. [PMID: 36292625 PMCID: PMC9602025 DOI: 10.3390/genes13101740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
This study aimed to apply transcriptomics to determine how Molor-Dabos-4 (MD-4) protects healthy rats against indomethacin (IND)-induced gastric ulcers and to identify the mechanism behind this protective effect. Rats were pretreated with MD-4 (0.3, 1.5, or 3 g/kg per day) for 21 days before inducing gastric ulcers by oral administration with indomethacin (30 mg/kg). Unulcerated and untreated healthy rats were used as controls. Effects of the treatment were assessed based on the ulcer index, histological and pathological examinations, and indicators of inflammation, which were determined by enzyme-linked immunosorbent assay. Transcriptomic analysis was performed for identifying potential pharmacological mechanisms. Eventually, after identifying potential target genes, the latter were validated by quantitative reverse-transcription polymerase chain reaction (qRT-PCR). After pretreatment with MD-4, gastric ulcers, along with other histopathological features, were reduced. MD-4 significantly (p < 0.05) increased the superoxide dismutase (SOD) levels in ulcers and reduced pepsin, TNF-α, and IL-6 levels. RNA-seq analysis identified a number of target genes on which MD-4 could potentially act. Many of these genes were involved in pathways that were linked to anti-inflammatory and antioxidant responses, and other protective mechanisms for the gastric mucosa. qRT-PCR showed that altered expression of the selected genes, such as Srm, Ryr-1, Eno3, Prkag3, and Eef1a2, was consistent with the transcriptome results. MD-4 exerts protective effects against IND-induced gastric ulcers by reducing inflammatory cytokines and pepsin and increasing the expression of SOD levels. Downregulation of Srm, Ryr-1, Eno3, Prkag3, and Eef1a2 genes involved in regulating arginine and proline metabolism, calcium signaling pathway, HIF-1 signaling pathway, oxytocin signaling pathway, and legionellosis are possibly involved in MD-4-mediated protection against gastric ulcers.
Collapse
Affiliation(s)
- Terigele Bao
- NMPA Key Laboratory of Quality Control of Traditional Chinese Medicine (Mongolian Medicine), School of Mongolian Medicine, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Lan Feng
- NMPA Key Laboratory of Quality Control of Traditional Chinese Medicine (Mongolian Medicine), School of Mongolian Medicine, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Sungbo Cho
- NMPA Key Laboratory of Quality Control of Traditional Chinese Medicine (Mongolian Medicine), School of Mongolian Medicine, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Hongzhen Yu
- NMPA Key Laboratory of Quality Control of Traditional Chinese Medicine (Mongolian Medicine), School of Mongolian Medicine, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Wenjie Jin
- NMPA Key Laboratory of Quality Control of Traditional Chinese Medicine (Mongolian Medicine), School of Mongolian Medicine, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Lili Dai
- NMPA Key Laboratory of Quality Control of Traditional Chinese Medicine (Mongolian Medicine), School of Mongolian Medicine, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Junqing Zhang
- Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou 571199, China
| | - Laxinamujila Bai
- NMPA Key Laboratory of Quality Control of Traditional Chinese Medicine (Mongolian Medicine), School of Mongolian Medicine, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Minghai Fu
- NMPA Key Laboratory of Quality Control of Traditional Chinese Medicine (Mongolian Medicine), School of Mongolian Medicine, Inner Mongolia Minzu University, Tongliao 028000, China
- Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou 571199, China
- Correspondence: (M.F.); (Y.C.)
| | - Yongsheng Chen
- NMPA Key Laboratory of Quality Control of Traditional Chinese Medicine (Mongolian Medicine), School of Mongolian Medicine, Inner Mongolia Minzu University, Tongliao 028000, China
- Correspondence: (M.F.); (Y.C.)
| |
Collapse
|
3
|
Huang Y, Fu T, Jiao X, Liu S, Xue Y, Liu J, Li Z. Hypothyroidism affects corneal homeostasis and wound healing in mice. Exp Eye Res 2022; 220:109111. [DOI: 10.1016/j.exer.2022.109111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/28/2022] [Accepted: 05/08/2022] [Indexed: 11/04/2022]
|
4
|
Zhou Y, Ji X, Chen J, Fu Y, Huang J, Guo R, Zhou J, Cen J, Zhang Q, Chu A, Huang Y, Xu C, Wang F. Short-chain fatty acid butyrate: A novel shield against chronic gastric ulcer. Exp Ther Med 2021; 21:329. [PMID: 33732302 PMCID: PMC7903393 DOI: 10.3892/etm.2021.9760] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 12/14/2020] [Indexed: 01/16/2023] Open
Abstract
Butyrate is one of the most abundant short-chain fatty acids produced by intestinal bacteria. In the present study, the action of butyrate on chronic gastric mucosa lesions was investigated, as well as its underlying mechanism in mice. Male mice from the Institute of Cancer Research were randomly divided into three groups: Sham, model and butyrate groups. Butyrate was administered intragastrically for 7 days to butyrate group mice following the establishment of a gastric ulcer model. Hematoxylin and eosin staining, immunohistochemical analysis, enzyme-linked immunosorbent assay and quantitative polymerase chain reaction were used to determine the therapeutic effects and molecular mechanism of butyrate treatment. The findings demonstrated that butyrate induced a marked shift in superoxide dismutase and catalase activities, along with a decrease in malondialdehyde levels, thereby attenuating oxidative stress. Furthermore, butyrate decreased the levels of pro-inflammatory cytokines interleukin-1β, tumour necrosis factor-α and leukotriene B4, which helped combat inflammatory responses. Moreover, butyrate treatment exerted remarkable positive influences that mediate an increase in 6-keto-PGF-1α (a degradation product of prostacyclin), trefoil factor 2, MUC5AC and fibroblast growth factor-7 levels to promote gastric mucosal repair. The expression of specific receptor GPR109A for butyrate was upregulated, with no significant difference noted in the expression of GPR43 or GPR41. Overall, the present findings revealed that butyrate exerted therapeutic effects by upregulating mucosal repair factors and stimulating protective responses against oxidation and inflammation. GPR109A may be the key receptor for butyrate therapy.
Collapse
Affiliation(s)
- Yan Zhou
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Xiawei Ji
- Department of Pathophysiology, School of Basic Medical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Jiajing Chen
- Department of Pathophysiology, School of Basic Medical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Yaoyang Fu
- Department of Pathophysiology, School of Basic Medical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Juewei Huang
- Department of Pathophysiology, School of Basic Medical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Rui Guo
- Department of Pathophysiology, School of Basic Medical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Jinhui Zhou
- Department of Pathophysiology, School of Basic Medical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Jianke Cen
- Department of Pathophysiology, School of Basic Medical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Qihao Zhang
- Department of Pathophysiology, School of Basic Medical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Anne Chu
- Department of Pathophysiology, School of Basic Medical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Yingpeng Huang
- Department of General Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Changlong Xu
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Fangyan Wang
- Department of Pathophysiology, School of Basic Medical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|
5
|
Salami AT, Adebimpe MA, Olagoke OC, Iyiola TO, Olaleye SB. Potassium bromate cytotoxicity in the Wister rat model of chronic gastric ulcers: Possible reversal by protocatechuic acid. J Food Biochem 2020; 44:e13501. [PMID: 33025593 DOI: 10.1111/jfbc.13501] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/09/2020] [Accepted: 09/15/2020] [Indexed: 12/13/2022]
Abstract
The interaction between ingested xenobiotics and the gastrointestinal epithelium influences the possibility of gut epithelial cytotoxicity and systemic toxicity. Potassium bromate (KBrO3 ) has been shown to perturb the central nervous system and it may be carcinogenic, albeit it is used as a food additive. This highlights the need to understand KBrO3 's effect on the stomach epithelium. Here, we report the cytotoxic potential of KBrO3 in an ulcerated stomach, as well as possible cytoprotection by the polyphenol - protocatechuic acid. Potassium bromate (12.5 mg/kg) and protocatechuic acid (120 mg/kg) were administered orally while omeprazole (20 mg/kg) was used as standard. Potassium bromate exacerbated gastric ulcers, increased malonaldehyde levels, catalase, and sodium pump activities, but reduced nitric oxide levels. Potassium bromate further increased mast cell count in the muscularis mucosa, while inducing chronic inflammation and moderate angiogenesis in the gastric mucosa. Our results delineate KBrO3 -induced gastric epithelial cytotoxicity that is ameliorated by protocatechuic acid. PRACTICAL APPLICATIONS: Potassium bromate is a known food additive in the baking, brewing, and cheese-making process. Conversely, protocatechuic acid (3,4-dihydroxybenzoic acid) is the polyphenolic content of plants like Hibiscus sabdariffa L that are commonly consumed as herbal drink, food, spices, and used in folk medicine. This study reports the cytoprotective effect of protocatechuic acid against gastric mucosa ulceration that has been aggravated by potassium bromate.
Collapse
Affiliation(s)
- Adeola T Salami
- Department of Physiology, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Mayokun A Adebimpe
- Department of Physiology, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Olawande C Olagoke
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas (CCNE), Universidade Federal de Santa Maria, Santa Maria, Brasil
| | - Toluwalope O Iyiola
- Department of Physiology, College of Medicine, University of Ibadan, Ibadan, Nigeria.,Department of Physiology, Faculty of Basic Medical Sciences, Adeleke University, Ede, Nigeria
| | - Samuel B Olaleye
- Department of Physiology, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
6
|
Thyroxine Affects Lipopolysaccharide-Induced Macrophage Differentiation and Myocardial Cell Apoptosis via the NF- κB p65 Pathway Both In Vitro and In Vivo. Mediators Inflamm 2019; 2019:2098972. [PMID: 31217746 PMCID: PMC6537024 DOI: 10.1155/2019/2098972] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 03/24/2019] [Indexed: 12/13/2022] Open
Abstract
Background Numerous studies have demonstrated that the inflammatory response is involved in the progression of lipopolysaccharide- (LPS-) induced myocardial cell apoptosis. Accumulating evidence has shown that thyroxine participates in diseases by downregulating the inflammatory response. This study aimed at investigating whether thyroxine alleviates LPS-induced myocardial cell apoptosis. Methods Bone marrow-derived macrophages (Mø) were treated with LPS and thyroxine, and Mø differentiation and Mø-related cytokine expression were measured. The effect of Mø differentiation on mouse cardiomyocyte (MCM) apoptosis was also detected in vitro. In addition, C57BL/6 mice underwent thyroidectomy and were treated with LPS 35 days later; subsequently, Mø differentiation and myocardial cell apoptosis in hearts were analyzed. To determine whether the nuclear factor-kappa B (NF-κB) p65 pathway mediates the effect of thyroxine on Mø differentiation and myocardial cell apoptosis, the specific NF-κB p65 pathway inhibitor JSH-23 was administered to mice that underwent a thyroidectomy. Results Levothyroxine treatment significantly reduced the activation of the NF-κB p65 pathway, decreased M1 macrophage (Mø1) differentiation and Mø1-related cytokine mRNA levels in LPS-treated Mø, and increased M2 macrophage (Mø2) differentiation and Mø2-related cytokine mRNA expression. The protective effects of levothyroxine on MCM apoptosis mediated by LPS-treated Mø were alleviated by JSH-23. In mice, thyroidectomy aggravated LPS-induced cardiac injury and cardiac dysfunction, further promoted NF-κB p65 activation, and increased cardiac Mø1 expression and myocardial cell apoptosis but decreased cardiac Mø2 expression. JSH-23 treatment significantly ameliorated the thyroidectomy-induced increases in myocardial cell apoptosis and Mø differentiation. Conclusions Thyroxine alleviated the Mø1/Mø2 imbalance, reduced the inflammatory response, decreased myocardial cell apoptosis, and protected against cardiac injury and cardiac dysfunction in LPS-treated mice. Thyroxine may be a novel therapeutic strategy to prevent and treat LPS-induced cardiac injury.
Collapse
|
7
|
He QD, Huang MS, Zhang LB, Shen JC, Lian LY, Zhang Y, Chen BH, Liu CC, Qian LC, Liu M, Yang ZB. Effect of Moxibustion on Intestinal Microbiome in Acute Gastric Ulcer Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2019; 2019:6184205. [PMID: 31949469 PMCID: PMC6948313 DOI: 10.1155/2019/6184205] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 08/13/2019] [Accepted: 11/27/2019] [Indexed: 12/15/2022]
Abstract
In Traditional Chinese Medicine (TCM), moxibustion had been used for thousands of years. Many clinical case reports and scientific studies had proved that moxibustion had a good effect in treating acute gastric ulcer (AGU). Some studies had shown that the relative content and species of bacteria in the intestinal would be changed when gastric mucosal injury happened. However, there was little research on the effect of intestinal microbiome with AGU rats that were treating by moxibustion. This study is aimed at analyzing the effect of fecal microbiome in rats with AGU by the 16S rDNA sequencing technology. Male SD rats were established by orally feeding once with 70% ethanol at 4 ml/kg except the control group, then treated by moxibustion in the stomach meridian group ("Liangmen," "Zusanli") and the gallbladder meridian group ("Riyue," "Yanglingquan") for 5 days. The 16S rDNA sequencing technology analysis of feces combined with histopathological methods and molecular biological detection methods was used to evaluate the therapeutic mechanism of moxibustion on AGU. AGU brought cause changes in the number and species of intestinal bacteria. Moxibustion on stomach meridian group could reduce the area of gastric mucosal injury and regulate the relative content of GAS and EGF. Moreover, moxibustion on the stomach meridian group could increase the relative content and species of beneficial bacteria in the intestine of rats with AGU. The relative abundance of intestinal probiotics was significantly upregulated in Alphaproteobacteria, Actinomycetales, and Bacillales. In addition, moxibustion might promote the repair of gastric mucosal injury by increasing the number and species of beneficial bacteria in the intestine.
Collapse
Affiliation(s)
- Qi-da He
- 1Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361005, China
- 2College of Acupuncture and Moxibustion, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Miao-sen Huang
- 1Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361005, China
- 2College of Acupuncture and Moxibustion, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Long-bin Zhang
- 1Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361005, China
| | - Jia-cheng Shen
- 1Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361005, China
| | - Lin-yu Lian
- 1Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361005, China
- 2College of Acupuncture and Moxibustion, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Yuan Zhang
- 1Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361005, China
- 3College of Acupuncture and Moxibustion, Hunan University of Traditional Chinese Medicine, Changsha 410208, China
| | - Bao-hua Chen
- 1Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361005, China
| | - Cai-chun Liu
- 1Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361005, China
| | - Lin-chao Qian
- 1Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361005, China
| | - Mi Liu
- 3College of Acupuncture and Moxibustion, Hunan University of Traditional Chinese Medicine, Changsha 410208, China
| | - Zong-bao Yang
- 1Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361005, China
| |
Collapse
|
8
|
Chang Z, Zheng J, Liu Z, Guo Q. Response to the Letter to the Editor "The Relationship Between Neutrophil-Lymphocyte Ratio and In-Stent Restenosis". Angiology 2018; 69:644-645. [PMID: 29781285 DOI: 10.1177/0003319718774179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Zhihui Chang
- 1 Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jiahe Zheng
- 1 Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Zhaoyu Liu
- 1 Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Qiyong Guo
- 1 Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|