1
|
Robinson KE, Moniz HA, Stokes AN, Feldman CR. Where Does All the Poison Go? Investigating Toxicokinetics of Newt (Taricha) Tetrodotoxin (TTX) in Garter Snakes (Thamnophis). J Chem Ecol 2024; 50:489-502. [PMID: 38842636 DOI: 10.1007/s10886-024-01517-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/14/2024] [Accepted: 05/22/2024] [Indexed: 06/07/2024]
Abstract
Animals that consume toxic diets provide models for understanding the molecular and physiological adaptations to ecological challenges. Garter snakes (Thamnophis) in western North America prey on Pacific newts (Taricha), which employ tetrodotoxin (TTX) as an antipredator defense. These snakes possess mutations in voltage-gated sodium channels (Nav), the molecular targets of TTX, that decrease the binding ability of TTX to sodium channels (target-site resistance). However, genetic variation at these loci that cannot explain all the phenotypic variation in TTX resistance in Thamnophis. We explored a separate means of resistance, toxin metabolism, to determine if TTX-resistant snakes either rapidly remove TTX or sequester TTX. We examined the metabolism and distribution of TTX in the body (toxicokinetics), to determine differences between TTX-resistant and TTX-sensitive snakes in the rates at which TTX is eliminated from organs and the whole body (using TTX half-life as our metric). We assayed TTX half-life in snakes from TTX-resistant and TTX-sensitive populations of three garter snake species with a coevolutionary history with newts (T. atratus, T. couchii, T. sirtalis), as well as two non-resistant "outgroup" species (T. elegans, Pituophis catenifer) that seldom (if ever) engage newts. We found TTX half-life varied across species, populations, and tissues. Interestingly, TTX half-life was shortest in T. elegans and P. catenifer compared to all other snakes. Furthermore, TTX-resistant populations of T. couchii and T. sirtalis eliminated TTX faster (shorter TTX half-life) than their TTX-sensitive counterparts, while populations of TTX-resistant and TTX-sensitive T. atratus showed no difference rates of TTX removal (same TTX half-life). The ability to rapidly eliminate TTX may have permitted increased prey consumption, which may have promoted the evolution of additional resistance mechanisms. Finally, snakes still retain substantial amounts of TTX, and we projected that snakes could be dangerous to their own predators days to weeks following the ingestion of a single newt. Thus, aspects of toxin metabolism may have been key in driving predator-prey relationships, and important in determining other ecological interactions.
Collapse
Affiliation(s)
- Kelly E Robinson
- Department of Biology and Program in Ecology, Evolution and Conservation Biology, University of Nevada, Reno, Reno, NV, USA.
- Program in Ecology, Evolution and Conservation Biology, University of Nevada, Reno, NV, USA.
| | - Haley A Moniz
- Department of Biology and Program in Ecology, Evolution and Conservation Biology, University of Nevada, Reno, Reno, NV, USA
- Program in Ecology, Evolution and Conservation Biology, University of Nevada, Reno, NV, USA
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, CA, USA
| | - Amber N Stokes
- Department of Biology, California State University Bakersfield, Bakersfield, CA, USA
| | - Chris R Feldman
- Department of Biology and Program in Ecology, Evolution and Conservation Biology, University of Nevada, Reno, Reno, NV, USA
- Program in Ecology, Evolution and Conservation Biology, University of Nevada, Reno, NV, USA
| |
Collapse
|
2
|
del Carlo RE, Reimche JS, Moniz HA, Hague MT, Agarwal SR, Brodie ED, Brodie ED, Leblanc N, Feldman CR. Coevolution with toxic prey produces functional trade-offs in sodium channels of predatory snakes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.08.570760. [PMID: 38106015 PMCID: PMC10723449 DOI: 10.1101/2023.12.08.570760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Seemingly unrelated traits often share the same underlying molecular mechanisms, potentially generating a pleiotropic relationship whereby selection shaping one trait can simultaneously compromise another. While such functional trade-offs are expected to influence evolutionary outcomes, their actual relevance in nature is masked by obscure links between genotype, phenotype, and fitness. Here, we describe functional trade-offs that likely govern a key adaptation and coevolutionary dynamics in a predator-prey system. Several garter snake (Thamnophis spp.) populations have evolved resistance to tetrodotoxin (TTX), a potent chemical defense in their prey, toxic newts (Taricha spp.). Snakes achieve TTX resistance through mutations occurring at toxin-binding sites in the pore of snake skeletal muscle voltage-gated sodium channels (NaV1.4). We hypothesized that these mutations impair basic NaV functions, producing molecular trade-offs that should ultimately scale up to compromised organismal performance. We investigate biophysical costs in two snake species with unique and independently evolved mutations that confer TTX resistance. We show electrophysiological evidence that skeletal muscle sodium channels encoded by toxin-resistant alleles are functionally compromised. Furthermore, skeletal muscles from snakes with resistance genotypes exhibit reduced mechanical performance. Lastly, modeling the molecular stability of these sodium channel variants partially explains the electrophysiological and muscle impairments. Ultimately, adaptive genetic changes favoring toxin resistance appear to negatively impact sodium channel function, skeletal muscle strength, and organismal performance. These functional trade-offs at the cellular and organ levels appear to underpin locomotor deficits observed in resistant snakes and may explain variation in the population-level success of toxin-resistant alleles across the landscape, ultimately shaping the trajectory of snake-newt coevolution.
Collapse
Affiliation(s)
- Robert E. del Carlo
- University of Nevada, Reno School of Medicine, Department of Pharmacology, Reno, Nevada, USA, 89557
- University of Nevada, Reno Program in Cell & Molecular Pharmacology & Physiology
| | - Jessica S. Reimche
- University of Nevada, Reno, Department of Biology, Reno, Nevada, USA, 89557
- University of Nevada, Reno Program in Ecology, Evolution & Conservation Biology
| | - Haley A. Moniz
- University of Nevada, Reno, Department of Biology, Reno, Nevada, USA, 89557
- University of Nevada, Reno Program in Ecology, Evolution & Conservation Biology
| | - Michael T.J. Hague
- University of Virginia, Department of Biology, Charlottesville, Virginia, USA, 22904
| | - Shailesh R. Agarwal
- University of Nevada, Reno School of Medicine, Department of Pharmacology, Reno, Nevada, USA, 89557
| | - Edmund D. Brodie
- University of Virginia, Department of Biology, Charlottesville, Virginia, USA, 22904
| | - Edmund D. Brodie
- Utah State University, Department of Biology, Logan, Utah, USA, 84322
| | - Normand Leblanc
- University of Nevada, Reno School of Medicine, Department of Pharmacology, Reno, Nevada, USA, 89557
| | - Chris R. Feldman
- University of Nevada, Reno, Department of Biology, Reno, Nevada, USA, 89557
- University of Nevada, Reno Program in Ecology, Evolution & Conservation Biology
| |
Collapse
|
3
|
Glass A, Eichholz MW. Snakes on the plains: The impacts of habitat structure on snake communities in Illinois grasslands. WILDLIFE SOC B 2022. [DOI: 10.1002/wsb.1366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Alex Glass
- Cooperative Wildlife Research Laboratory Southern Illinois University Carbondale 1125 Lincoln Drive Carbondale IL 62901 USA
| | - Michael W. Eichholz
- Cooperative Wildlife Research Laboratory and Center for Ecology Southern Illinois University Carbondale 1125 Lincoln Drive Carbondale IL 62901 USA
| |
Collapse
|
4
|
Mohammadi S, Yang L, Bulbert M, Rowland HM. Defence mitigation by predators of chemically defended prey integrated over the predation sequence and across biological levels with a focus on cardiotonic steroids. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220363. [PMID: 36133149 PMCID: PMC9449480 DOI: 10.1098/rsos.220363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/17/2022] [Indexed: 05/10/2023]
Abstract
Predator-prey interactions have long served as models for the investigation of adaptation and fitness in natural environments. Anti-predator defences such as mimicry and camouflage provide some of the best examples of evolution. Predators, in turn, have evolved sensory systems, cognitive abilities and physiological resistance to prey defences. In contrast to prey defences which have been reviewed extensively, the evolution of predator counter-strategies has received less attention. To gain a comprehensive view of how prey defences can influence the evolution of predator counter-strategies, it is essential to investigate how and when selection can operate. In this review we evaluate how predators overcome prey defences during (i) encounter, (ii) detection, (iii) identification, (iv) approach, (v) subjugation, and (vi) consumption. We focus on prey that are protected by cardiotonic steroids (CTS)-defensive compounds that are found in a wide range of taxa, and that have a specific physiological target. In this system, coevolution is well characterized between specialist insect herbivores and their host plants but evidence for coevolution between CTS-defended prey and their predators has received less attention. Using the predation sequence framework, we organize 574 studies reporting predators overcoming CTS defences, integrate these counter-strategies across biological levels of organization, and discuss the costs and benefits of attacking CTS-defended prey. We show that distinct lineages of predators have evolved dissecting behaviour, changes in perception of risk and of taste perception, and target-site insensitivity. We draw attention to biochemical, hormonal and microbiological strategies that have yet to be investigated as predator counter-adaptations to CTS defences. We show that the predation sequence framework will be useful for organizing future studies of chemically mediated systems and coevolution.
Collapse
Affiliation(s)
- Shabnam Mohammadi
- School of Biological Sciences, University of Nebraska, Lincoln, NE, USA
- Institut für Zell- und Systembiologie der Tiere, Universität Hamburg, Hamburg, Germany
- Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Lu Yang
- Wellcome Sanger Institute, Cambridge, UK
| | - Matthew Bulbert
- Department of Biological Sciences, Macquarie University North Ryde, New South Wales, Australia
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, University of Oxford Brookes, Oxford, UK
- Max Planck Institute for Chemical Ecology, Jena, Germany
| | | |
Collapse
|
5
|
Mohammadi S, Yang L, Bulbert M, Rowland HM. Defence mitigation by predators of chemically defended prey integrated over the predation sequence and across biological levels with a focus on cardiotonic steroids. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220363. [PMID: 36133149 DOI: 10.6084/m9.figshare.c.6168216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/17/2022] [Indexed: 05/25/2023]
Abstract
Predator-prey interactions have long served as models for the investigation of adaptation and fitness in natural environments. Anti-predator defences such as mimicry and camouflage provide some of the best examples of evolution. Predators, in turn, have evolved sensory systems, cognitive abilities and physiological resistance to prey defences. In contrast to prey defences which have been reviewed extensively, the evolution of predator counter-strategies has received less attention. To gain a comprehensive view of how prey defences can influence the evolution of predator counter-strategies, it is essential to investigate how and when selection can operate. In this review we evaluate how predators overcome prey defences during (i) encounter, (ii) detection, (iii) identification, (iv) approach, (v) subjugation, and (vi) consumption. We focus on prey that are protected by cardiotonic steroids (CTS)-defensive compounds that are found in a wide range of taxa, and that have a specific physiological target. In this system, coevolution is well characterized between specialist insect herbivores and their host plants but evidence for coevolution between CTS-defended prey and their predators has received less attention. Using the predation sequence framework, we organize 574 studies reporting predators overcoming CTS defences, integrate these counter-strategies across biological levels of organization, and discuss the costs and benefits of attacking CTS-defended prey. We show that distinct lineages of predators have evolved dissecting behaviour, changes in perception of risk and of taste perception, and target-site insensitivity. We draw attention to biochemical, hormonal and microbiological strategies that have yet to be investigated as predator counter-adaptations to CTS defences. We show that the predation sequence framework will be useful for organizing future studies of chemically mediated systems and coevolution.
Collapse
Affiliation(s)
- Shabnam Mohammadi
- School of Biological Sciences, University of Nebraska, Lincoln, NE, USA
- Institut für Zell- und Systembiologie der Tiere, Universität Hamburg, Hamburg, Germany
- Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Lu Yang
- Wellcome Sanger Institute, Cambridge, UK
| | - Matthew Bulbert
- Department of Biological Sciences, Macquarie University North Ryde, New South Wales, Australia
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, University of Oxford Brookes, Oxford, UK
- Max Planck Institute for Chemical Ecology, Jena, Germany
| | | |
Collapse
|
6
|
Durso AM, Kieran TJ, Glenn TC, Mullin SJ. Comparison of Three Methods for Measuring Dietary Composition of Plains Hog-nosed Snakes. HERPETOLOGICA 2022. [DOI: 10.1655/herpetologica-d-21-00023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Andrew M. Durso
- Department of Biological Sciences, Eastern Illinois University, Charleston, IL 61920, USA
| | - Troy J. Kieran
- Department of Environmental Health Science, University of Georgia, Athens, GA 30602, USA
| | - Travis C. Glenn
- Department of Environmental Health Science, University of Georgia, Athens, GA 30602, USA
| | - Stephen J. Mullin
- Department of Biological Sciences, Eastern Illinois University, Charleston, IL 61920, USA
| |
Collapse
|
7
|
Hanifin CT, Kudo Y, Yotsu-Yamashita M. Chemical Ecology of the North American Newt Genera Taricha and Notophthalmus. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2022; 118:101-130. [PMID: 35416518 DOI: 10.1007/978-3-030-92030-2_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The North American newt genera Taricha and Notophthalmus (order Caudata) are well known for the combination of potent toxicity, aposematic coloration, and striking defense postures that protects these animals from predation. This suite of traits is centered around the neurotoxin tetrodotoxin, which causes paralysis and death in metazoans by disrupting the initiation and propagation of electrical signals in the nerves and muscles. Tetrodotoxin defends newts from predation across multiple life history stages and its role in generating arms-race coevolution between Taricha newts and garter snake (genus Thamnophis) predators is well studied. However, understanding the broader picture of chemical defenses in Taricha and Notophthalmus requires an expanded comprehension of the defensive chemical ecology of tetrodotoxin that includes possible coevolutionary interactions with insect egg predators, protection against parasites, as well as mimicry complexes associated with tetrodotoxin and aposematic coloration in both genera. Herein the authors review what is known about the structure, function, and pharmacology of tetrodotoxin to explore its evolution and chemical ecology in the North American newt. Focus is made specifically on the origin and possible biosynthesis of tetrodotoxin in these taxa as well as providing an expanded picture of the web of interactions that contribute to landscape level patterns of toxicity and defense in Taricha and Notophthalmus.
Collapse
Affiliation(s)
- Charles T Hanifin
- Department of Biology, Utah State University, 320 N. Aggie Blvd, Vernal, UT, 84078, USA.
| | - Yuta Kudo
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi, 980-8572, Japan
| | - Mari Yotsu-Yamashita
- Graduate School of Agricultural Science & Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 468-1 Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi, 980-8572, Japan
| |
Collapse
|