1
|
Bass AL, DiCicco E, Kaukinen KH, Li S, Johnson R, Powell J, Isaac V, Dedeluk NB, Bateman AW, Miller KM. Infectious agent release and Pacific salmon exposure at Atlantic salmon farms revealed by environmental DNA. Sci Rep 2024; 14:31488. [PMID: 39732981 PMCID: PMC11682043 DOI: 10.1038/s41598-024-83250-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 12/12/2024] [Indexed: 12/30/2024] Open
Abstract
The potential risk posed by infectious agents (IAs) associated with netpen aquaculture to wild fishes is determined based on the "release" of IAs from netpens into the environment, the "exposure" of the wild fish to those released agents, and the "consequence" for wild fish experiencing infection by those agents. Information available to characterize these three factors is often lacking, and the occurrence of transmission from aquaculture to wild fish as well as potential consequences of such transmission are difficult to observe. In this study, we utilized environmental DNA (eDNA) to characterize the release of dozens of IAs from, and exposure of Pacific salmon to, Atlantic salmon aquaculture. We combined these factors with the consequence of infection, as determined by the literature, to identify IAs that may pose a risk to wild salmon exposed to aquaculture in British Columbia, Canada. Over an 18-month period, eDNA samples were collected from seven active and four inactive netpen aquaculture sites in the Broughton Archipelago, BC. A meta-analytical mean across 22 IAs showed that the odds of IA detection at active sites was 4.3 (95% confidence interval = 2.3:8.1) times higher than at inactive sites, with 11 IAs in particular demonstrating a pattern consistent with elevated release. Oncorhynchus tshawytscha was the only Pacific salmon species presenting eDNA detections more likely to occur around and within active netpens relative to inactive sites. After considering the evidence of negative consequences of infection (from previous literature) in tandem with release model results, we determined that Tenacibaculum maritimum, Tenacibaculum finnmarkense, Ichthyobodo spp., and Piscine orthoreovirus are potential risks to Pacific salmon exposed to marine netpen aquaculture. These IAs, and others demonstrating patterns consistent with release but with insufficient prior research to evaluate the consequences of infection, require further studies that identify the factors influencing the intensity of release, the spatial extent of release around netpens, and the prevalence of infection in wild fish within known distances from netpens.
Collapse
Affiliation(s)
- Arthur L Bass
- Fisheries and Oceans Canada, Pacific Biological Station, Nanaimo, V9T 6N7, Canada.
| | | | - Karia H Kaukinen
- Fisheries and Oceans Canada, Pacific Biological Station, Nanaimo, V9T 6N7, Canada
| | - Shaorong Li
- Fisheries and Oceans Canada, Pacific Biological Station, Nanaimo, V9T 6N7, Canada
| | - Rick Johnson
- Kwikwasut'inuxw Haxwa'mis First Nation, Alert Bay, V0N 1A0, Canada
| | - John Powell
- Mamalilikulla First Nation, Campbell River, V9W 8C9, Canada
| | - Victor Isaac
- 'Namgis First Nation, Alert Bay, V0N 1A0, Canada
| | | | | | - Kristina M Miller
- Fisheries and Oceans Canada, Pacific Biological Station, Nanaimo, V9T 6N7, Canada
| |
Collapse
|
2
|
Akbarzadeh A, Ming TJ, Schulze AD, Kaukinen KH, Li S, Günther OP, Houde ALS, Miller KM. Developing molecular classifiers to detect environmental stressors, smolt stages and morbidity in coho salmon, Oncorhynchus kisutch. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175626. [PMID: 39168345 DOI: 10.1016/j.scitotenv.2024.175626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/16/2024] [Accepted: 08/16/2024] [Indexed: 08/23/2024]
Abstract
Aquatic species are increasingly confronted with environmental stressors because of climate change. Although molecular technologies have advanced our understanding of how organisms respond to stressors in laboratory settings, the ability to detect physiological responses to specific stressors under complex field conditions remains underdeveloped. This research applied multi-stressor challenge trials on coho salmon, employing the "Salmon Fit-Chips" genomic tool and a random forest-based classification model to develop classifiers predictive for chronic thermal and hypoxic stress, as well as salinity acclimation, smolt stage and morbidity status. The study also examined how smolts and de-smolts (smolts not having entered SW during the smolt window) responded transcriptionally to exposure to saltwater. Using RF classifiers optimized with 4 to 12 biomarkers, we identified transcriptional signatures that accurately predicted the presence of each stressor and physiological state, achieving prediction accuracy rates between 86.8 % and 100 %, regardless of other background stressors present. Stressor recovery time was established by placing fish back into non-stressor conditions after stress exposure, providing important context to stressor detections in field applications. Recovery from thermal and hypoxic stress requires about 3 and 2 days, respectively, with >3 days needed for re-acclimation to freshwater for seawater acclimated fish. The study also found non-additive (synergistic) effects of multiple stressors on mortality risk. Importantly, osmotic stress associated with de-smolts was the most important predictor of mortality. In saltwater, de-smolts exposed to salinity, high temperature, and hypoxia experienced a 9-fold increase in mortality compared to those only exposed to saltwater, suggesting a synergistic response to multiple stressors. These findings suggest that delays in hatchery releases to support release of larger fish need to be carefully scrutinized to ensure fish are not being released as de-smolts, which are highly susceptible to additional climate-induced stressors like rising temperatures and reduced dissolved oxygen levels in the marine environment.
Collapse
Affiliation(s)
- Arash Akbarzadeh
- Pacific Biological Station, Fisheries and Oceans Canada, 3190 Hammond Bay Rd, Nanaimo, BC V9T 6N7, Canada; Department of Fisheries, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran.
| | - Tobi J Ming
- Pacific Biological Station, Fisheries and Oceans Canada, 3190 Hammond Bay Rd, Nanaimo, BC V9T 6N7, Canada
| | - Angela D Schulze
- Pacific Biological Station, Fisheries and Oceans Canada, 3190 Hammond Bay Rd, Nanaimo, BC V9T 6N7, Canada
| | - Karia H Kaukinen
- Pacific Biological Station, Fisheries and Oceans Canada, 3190 Hammond Bay Rd, Nanaimo, BC V9T 6N7, Canada
| | - Shaorong Li
- Pacific Biological Station, Fisheries and Oceans Canada, 3190 Hammond Bay Rd, Nanaimo, BC V9T 6N7, Canada
| | - Oliver P Günther
- Günther Analytics, 402-5775 Hampton Place, Vancouver, BC V6T 2G6, Canada
| | - Aimee Lee S Houde
- Environmental Dynamics Inc. (EDI), 208A - 2520 Bowen Road, Nanaimo, BC V9T 3L3, Canada
| | - Kristina M Miller
- Pacific Biological Station, Fisheries and Oceans Canada, 3190 Hammond Bay Rd, Nanaimo, BC V9T 6N7, Canada
| |
Collapse
|
3
|
Krkosek M, Bateman AW, Bass AL, Bugg WS, Connors BM, Deeg CM, Di Cicco E, Godwin S, Grimm J, Krichel L, Mordecai G, Morton A, Peacock S, Shea D, Riddell B, Miller KM. Pathogens from salmon aquaculture in relation to conservation of wild Pacific salmon in Canada. SCIENCE ADVANCES 2024; 10:eadn7118. [PMID: 39413187 PMCID: PMC11482380 DOI: 10.1126/sciadv.adn7118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 06/21/2024] [Indexed: 10/18/2024]
Abstract
The spread of pathogens from farmed salmon is a conservation concern for wild Pacific salmon in British Columbia (BC), Canada. Three pathogens are prevalent in farmed Atlantic salmon in BC, spill over to wild Pacific salmon, and are linked to negative impacts on wild salmon: Piscine orthoreovirus, Tenacibaculum spp., and sea lice (Lepeophtheirus salmonis). Molecular screening of infectious agents in farmed and wild salmon and environmental DNA highlights a further 4 agents that are likely elevated near salmon farms and 37 that co-occur in wild and farmed salmon. Pathogens likely affect wild salmon indirectly by mediating migration, competition, and predation. Current net-pen aquaculture practices pose these risks to numerous populations of all species of wild salmon in BC, most of which are not covered in Government of Canada science and advisory reports. Climate change, pathogen evolution, and changes to disease management and aquaculture regulations will influence future risks.
Collapse
Affiliation(s)
- Martin Krkosek
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks St, Toronto, ON M5S 3B2, Canada
- Salmon Coast Field Station, General Delivery, Simoom Sound, BC V0P 1S0, Canada
| | - Andrew W. Bateman
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks St, Toronto, ON M5S 3B2, Canada
- Salmon Coast Field Station, General Delivery, Simoom Sound, BC V0P 1S0, Canada
- Pacific Salmon Foundation, 1385 W 8th Ave #320, Vancouver, BC V6H 3V9, Canada
| | - Arthur L. Bass
- Pacific Biological Station, Fisheries and Oceans Canada, 3190 Hammond Bay Rd, Nanaimo, BC V9T 6N7, Canada
| | - William S. Bugg
- Pacific Salmon Foundation, 1385 W 8th Ave #320, Vancouver, BC V6H 3V9, Canada
- Department of Forest and Conservation Sciences, University of British Columbia, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada
| | - Brendan M. Connors
- Institute of Ocean Sciences, Fisheries and Oceans in Canada, 9860 W Saanich Rd, Sidney, BC V8L 5T5, Canada
| | - Christoph M. Deeg
- Pacific Salmon Foundation, 1385 W 8th Ave #320, Vancouver, BC V6H 3V9, Canada
- Pacific Biological Station, Fisheries and Oceans Canada, 3190 Hammond Bay Rd, Nanaimo, BC V9T 6N7, Canada
| | - Emiliano Di Cicco
- Pacific Salmon Foundation, 1385 W 8th Ave #320, Vancouver, BC V6H 3V9, Canada
| | - Sean Godwin
- Salmon Coast Field Station, General Delivery, Simoom Sound, BC V0P 1S0, Canada
- Pacific Salmon Foundation, 1385 W 8th Ave #320, Vancouver, BC V6H 3V9, Canada
- Bodega Marine Laboratory, University of California, Davis, 2099 Westshore Rd, Bodega Bay, CA 94923, USA
- Department of Environmental Science and Policy, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Jaime Grimm
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks St, Toronto, ON M5S 3B2, Canada
| | - Leila Krichel
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks St, Toronto, ON M5S 3B2, Canada
- Salmon Coast Field Station, General Delivery, Simoom Sound, BC V0P 1S0, Canada
| | - Gideon Mordecai
- Institute for the Oceans and Fisheries, University of British Columbia, AERL, 2202 Main Mall, Vancouver, BC V6T 1Z4, Canada
| | - Alexandra Morton
- Salmon Coast Field Station, General Delivery, Simoom Sound, BC V0P 1S0, Canada
- Raincoast Research Society, Sointula, BC V0N 3E0, Canada
| | - Stephanie Peacock
- Salmon Coast Field Station, General Delivery, Simoom Sound, BC V0P 1S0, Canada
- Pacific Salmon Foundation, 1385 W 8th Ave #320, Vancouver, BC V6H 3V9, Canada
| | - Dylan Shea
- NORCE Norwegian Research Centre, Nygårdsgaten 112, 5008 Bergen, Norway
| | - Brian Riddell
- Pacific Salmon Foundation, 1385 W 8th Ave #320, Vancouver, BC V6H 3V9, Canada
| | - Kristina M. Miller
- Pacific Biological Station, Fisheries and Oceans Canada, 3190 Hammond Bay Rd, Nanaimo, BC V9T 6N7, Canada
- Department of Forest and Conservation Sciences, University of British Columbia, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
4
|
Abdelrazek SMR, Connon RE, Sanchez C, Atencio B, Mauduit F, Lehman B, Hallett SL, Atkinson SD, Foott JS, Daniels ME. Responses to pathogen exposure in sentinel juvenile fall-run Chinook salmon in the Sacramento River, CA. CONSERVATION PHYSIOLOGY 2023; 11:coad066. [PMID: 37649642 PMCID: PMC10465009 DOI: 10.1093/conphys/coad066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 08/04/2023] [Accepted: 08/22/2023] [Indexed: 09/01/2023]
Abstract
This study investigated how the deployment of juvenile Chinook salmon in ambient river conditions and the subsequent exposure to and infection by pathogens was associated with the changes in the expression of genes involved in immune system functioning, general stress and host development. Juvenile fish were deployed in sentinel cages for 21 days in the Sacramento River, CA, USA. Gill, kidney and intestinal tissue were sampled at 0, 7, 14 and 21 days post-deployment. Pathogen detection and host response were assessed by a combination of molecular and histopathological evaluation. Our findings showed that fish became infected by the parasites Ceratonova shasta, Parvicapsula minibicornis and Ichthyophthirius multifiliis, and to a lesser extent, the bacteria Flavobacterium columnare and Rickettsia-like organisms. Co-infection was common among sentinel fish. Expression of investigated genes was altered following deployment and was often associated with pathogen abundance. This study provides a foundation for future avenues of research investigating pathogens that affect out-migrating Chinook salmon in the Sacramento River, and offers crucial knowledge related to conservation efforts.
Collapse
Affiliation(s)
- Samah M R Abdelrazek
- Department of Anatomy, Physiology and Cell Biology, University of California, Davis, Davis, CA 95616, USA
| | - Richard E Connon
- Department of Anatomy, Physiology and Cell Biology, University of California, Davis, Davis, CA 95616, USA
| | - Camilo Sanchez
- Department of Anatomy, Physiology and Cell Biology, University of California, Davis, Davis, CA 95616, USA
| | - Benjamin Atencio
- Institute of Marine Sciences, University of California, Santa Cruz, Affiliated with Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Santa Cruz, CA 95060, USA
| | - Florian Mauduit
- Department of Anatomy, Physiology and Cell Biology, University of California, Davis, Davis, CA 95616, USA
| | - Brendan Lehman
- Institute of Marine Sciences, University of California, Santa Cruz, Affiliated with Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Santa Cruz, CA 95060, USA
| | - Sascha L Hallett
- Department of Microbiology, Oregon State University, Corvallis, OR 97331, USA
| | - Stephen D Atkinson
- Department of Microbiology, Oregon State University, Corvallis, OR 97331, USA
| | - J. Scott Foott
- California Nevada Fish Health Center, U.S. Fish and Wildlife Service, Anderson, CA 96007, USA
| | - Miles E Daniels
- Institute of Marine Sciences, University of California, Santa Cruz, Affiliated with Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Santa Cruz, CA 95060, USA
| |
Collapse
|
5
|
Mordecai G, Bass AL, Routledge R, Di Cicco E, Teffer A, Deeg C, Bateman AW, Miller KM. Assessing the role of Piscine orthoreovirus in disease and the associated risk for wild Pacific salmon. BMC Biol 2023; 21:114. [PMID: 37208758 DOI: 10.1186/s12915-023-01548-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 02/20/2023] [Indexed: 05/21/2023] Open
Abstract
This paper is a response to Polinski, M. P. et al. Innate antiviral defense demonstrates high energetic efficiency in a bony fish. BMC Biology 19, 138 (2021). https://doi.org/10.1186/s12915-021-01069-2.
Collapse
Affiliation(s)
- Gideon Mordecai
- Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, BC, Canada.
| | - Arthur L Bass
- Pacific Salmon Ecology and Conservation Laboratory, Department of Forest and Conservation Sciences University of British Columbia, Vancouver, BC, Canada
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, BC, Canada
| | - Rick Routledge
- Department of Statistics and Actuarial Science, Simon Fraser University, Burnaby, BC, Canada
| | | | - Amy Teffer
- Department of Environmental Conservation, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Christoph Deeg
- Pacific Salmon Foundation, Vancouver, BC, Canada
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Andrew W Bateman
- Pacific Salmon Foundation, Vancouver, BC, Canada
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Kristina M Miller
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, BC, Canada
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
6
|
Wang Y, Bass AL, Hinch SG, Li S, Di Cicco E, Kaukinen KH, Ferguson H, Ming TJ, Patterson DA, Miller KM. Infectious agents and their physiological correlates in early marine Chinook salmon ( Oncorhynchus tshawytscha). CONSERVATION PHYSIOLOGY 2023; 11:coad031. [PMID: 37701371 PMCID: PMC10494280 DOI: 10.1093/conphys/coad031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 03/27/2023] [Accepted: 04/24/2023] [Indexed: 09/14/2023]
Abstract
The early marine life of Pacific salmon is believed to be a critical period limiting population-level survival. Recent evidence suggests that some infectious agents are associated with survival but linkages with underlying physiological mechanisms are lacking. While challenge studies can demonstrate cause and effect relationships between infection and pathological change or mortality, in some cases pathological change may only manifest in the presence of environmental stressors; thus, it is important to gain context from field observations. Herein, we examined physiological correlates with infectious agent loads in Chinook salmon during their first ocean year. We measured physiology at the molecular (gene expression), metabolic (plasma chemistry) and cellular (histopathology) levels. Of 46 assayed infectious agents, 27 were detected, including viruses, bacteria and parasites. This exploratory study identified. a strong molecular response to viral disease and pathological change consistent with jaundice/anemia associated with Piscine orthoreovirus,strong molecular signals of gill inflammation and immune response associated with gill agents `Candidatus Branchiomonas cysticola' and Parvicapsula pseudobranchicola,a general downregulation of gill immune response associated with Parvicapsula minibicornis complementary to that of P. pseudobranchicola.Importantly, our study provides the first evidence that the molecular activation of viral disease response and the lesions observed during the development of the PRV-related disease jaundice/anemia in farmed Chinook salmon are also observed in wild juvenile Chinook salmon.
Collapse
Affiliation(s)
- Yuwei Wang
- Forest and Conservation Sciences, University of British Columbia, 3041-2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Arthur L Bass
- Forest and Conservation Sciences, University of British Columbia, 3041-2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
- Pacific Biological Station, Fisheries and Oceans Canada, 3190 Hammond Bay Rd, Nanaimo, BC, V9T 6N7, Canada
| | - Scott G Hinch
- Forest and Conservation Sciences, University of British Columbia, 3041-2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Shaorong Li
- Pacific Biological Station, Fisheries and Oceans Canada, 3190 Hammond Bay Rd, Nanaimo, BC, V9T 6N7, Canada
| | - Emiliano Di Cicco
- Pacific Salmon Foundation, 1682 W 7th Ave, Vancouver, BC, V6J 4S6, Canada
| | - Karia H Kaukinen
- Pacific Biological Station, Fisheries and Oceans Canada, 3190 Hammond Bay Rd, Nanaimo, BC, V9T 6N7, Canada
| | - Hugh Ferguson
- School of Veterinary Medicine, St. George’s University, University Centre Grenada, W. Indies, Grenada
| | - Tobi J Ming
- Pacific Biological Station, Fisheries and Oceans Canada, 3190 Hammond Bay Rd, Nanaimo, BC, V9T 6N7, Canada
| | - David A Patterson
- Fisheries and Oceans Canada, School of Resource and Environmental Mangement, Simon Fraser University, Science Branch, 643A Science Rd, Burnaby, BC, V5A 1S6, Canada
| | - Kristina M Miller
- Forest and Conservation Sciences, University of British Columbia, 3041-2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
- Pacific Biological Station, Fisheries and Oceans Canada, 3190 Hammond Bay Rd, Nanaimo, BC, V9T 6N7, Canada
| |
Collapse
|
7
|
Jones SRM, Low JC, Goodall A. Parvicapsula pseudobranchicola in the northeast Pacific Ocean is rare in farmed Atlantic salmon Salmo salar despite widespread occurrence and pathology in wild Pacific salmon Oncorhynchus spp. Parasit Vectors 2023; 16:138. [PMID: 37085914 PMCID: PMC10122293 DOI: 10.1186/s13071-023-05751-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/21/2023] [Indexed: 04/23/2023] Open
Abstract
BACKGROUND Infection with the myxozoan parasite Parvicapsula pseudobranchicola causes disease in wild and farmed salmonids in Norway. In the northeast Pacific Ocean, the parasite has been reported in Pacific salmon Oncorhynchus spp. without evidence of disease. The objectives of the present study were to confirm the identity of P. pseudobranchicola in the Pacific, document its host and geographic ranges, and describe associated pathological changes. METHODS Ocean-entry year wild pink salmon Oncorhynchus gorbuscha, chum salmon O. keta, Chinook salmon O. tshawytscha, coho salmon O. kisutch and sockeye salmon O. nerka were collected in summer and autumn surveys near Vancouver Island (VI) and from a winter survey in the Gulf of Alaska. Samples were also obtained from farmed Atlantic salmon Salmo salar and Chinook salmon near VI. Samples were analysed by qPCR and histology using conventional staining or in situ hybridisation. Parasite sequence was obtained from small subunit ribosomal RNA gene (SSU rDNA). RESULTS Identical 1525 base-pair SSU rDNA sequences from infected pink salmon, chum salmon and Chinook salmon shared 99.93% identity with a P. pseudobranchicola sequence from Norwegian Atlantic salmon. In autumn surveys, the prevalence was greatest in chum salmon (91.8%) and pink salmon (85.9%) and less so in Chinook salmon (68.8%) and sockeye salmon (8.3%). In farmed salmon, the prevalence was zero in Atlantic salmon (n = 967) and 41% in Chinook salmon (n = 118). Infections were preferentially sited in pseudobranch and visualised by in situ hybridisation. Heavy parasite burdens in all species of Pacific salmon were inconsistently associated with focal granulomatous pseudobranchitis. CONCLUSIONS In the northeast Pacific, widespread occurrence of P. pseudobranchicola in Pacific salmon together with its absence or sporadic occurrence in farmed Atlantic salmon differs from its epidemiology in Norway, despite similar pathological development in the pseudobranch. Consequences of the infections to the health of wild Pacific salmon, identity of the invertebrate host and the distribution and abundance of infective actinospores are unknown and remain high priorities for research.
Collapse
Affiliation(s)
- Simon R M Jones
- Fisheries and Oceans Canada, Pacific Biological Station, Nanaimo, BC, Canada.
| | - Jessica C Low
- Fisheries and Oceans Canada, Pacific Biological Station, Nanaimo, BC, Canada
| | - Aidan Goodall
- Fisheries and Oceans Canada, Pacific Biological Station, Nanaimo, BC, Canada
| |
Collapse
|
8
|
Bass AL, Bateman AW, Kaukinen KH, Li S, Ming T, Patterson DA, Hinch SG, Miller KM. The spatial distribution of infectious agents in wild Pacific salmon along the British Columbia coast. Sci Rep 2023; 13:5473. [PMID: 37016008 PMCID: PMC10071257 DOI: 10.1038/s41598-023-32583-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 03/29/2023] [Indexed: 04/06/2023] Open
Abstract
Although infectious agents can act as strong population regulators, knowledge of their spatial distributions in wild Pacific salmon is limited, especially in the marine environment. Characterizing pathogen distributions during early marine residence, a period considered a survival bottleneck for Pacific salmon, may reveal where salmon populations are exposed to potentially detrimental pathogens. Using high-throughput qPCR, we determined the prevalence of 56 infectious agents in 5719 Chinook, 2032 Coho and 4062 Sockeye salmon, sampled between 2008 and 2018, in their first year of marine residence along coastal Western Canada. We identified high prevalence clusters, which often shifted geographically with season, for most of the 41 detected agents. A high density of infection clusters was found in the Salish Sea along the east coast of Vancouver Island, an important migration route and residence area for many salmon populations, some experiencing chronically poor marine survival. Maps for each infectious agent taxa showing clusters across all host species are provided. Our novel documentation of salmon pathogen distributions in the marine environment contributes to the ecological knowledge regarding some lesser known pathogens, identifies salmon populations potentially impacted by specific pathogens, and pinpoints priority locations for future research and remediation.
Collapse
Affiliation(s)
- Arthur L Bass
- Forest and Conservation Sciences, University of British Columbia, Vancouver, V6T 1Z4, Canada.
| | - Andrew W Bateman
- Pacific Salmon Foundation, Vancouver, V6J 4S6, Canada
- Ecology and Evolutionary Biology, University of Toronto, Toronto, M5S 1A1, Canada
| | - Karia H Kaukinen
- Fisheries and Oceans Canada, Pacific Biological Station, Nanaimo, V9T 6N7, Canada
| | - Shaorong Li
- Fisheries and Oceans Canada, Pacific Biological Station, Nanaimo, V9T 6N7, Canada
| | - Tobi Ming
- Fisheries and Oceans Canada, Pacific Biological Station, Nanaimo, V9T 6N7, Canada
| | - David A Patterson
- Fisheries and Oceans Canada, Science Branch, Pacific Region, School of Resource and Environmental Management, Simon Fraser University, Burnaby, V5A 1S6, Canada
| | - Scott G Hinch
- Forest and Conservation Sciences, University of British Columbia, Vancouver, V6T 1Z4, Canada
| | - Kristina M Miller
- Forest and Conservation Sciences, University of British Columbia, Vancouver, V6T 1Z4, Canada
- Fisheries and Oceans Canada, Pacific Biological Station, Nanaimo, V9T 6N7, Canada
| |
Collapse
|
9
|
Hutson KS, Davidson IC, Bennett J, Poulin R, Cahill PL. Assigning cause for emerging diseases of aquatic organisms. Trends Microbiol 2023:S0966-842X(23)00031-8. [PMID: 36841735 DOI: 10.1016/j.tim.2023.01.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/25/2023]
Abstract
Resolving the cause of disease (= aetiology) in aquatic organisms is a challenging but essential goal, heightened by increasing disease prevalence in a changing climate and an interconnected world of anthropogenic pathogen spread. Emerging diseases play important roles in evolutionary ecology, wildlife conservation, the seafood industry, recreation, cultural practices, and human health. As we emerge from a global pandemic of zoonotic origin, we must focus on timely diagnosis to confirm aetiology and enable response to diseases in aquatic ecosystems. Those systems' resilience, and our own sustainable use of seafood, depend on it. Synchronising traditional and recent advances in microbiology that span ecological, veterinary, and medical fields will enable definitive assignment of risk factors and causal agents for better biosecurity management and healthier aquatic ecosystems.
Collapse
Affiliation(s)
- Kate S Hutson
- Cawthron Institute, 98 Halifax St East, Nelson, New Zealand; College of Science and Engineering, James Cook University, Townsville, Australia.
| | - Ian C Davidson
- Cawthron Institute, 98 Halifax St East, Nelson, New Zealand
| | - Jerusha Bennett
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | - Robert Poulin
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | | |
Collapse
|