1
|
Samad NA, Hidalgo O, Saliba E, Siljak-Yakovlev S, Strange K, Leitch IJ, Dagher-Kharrat MB. Genome Size Evolution and Dynamics in Iris, with Special Focus on the Section Oncocyclus. PLANTS 2020; 9:plants9121687. [PMID: 33271865 PMCID: PMC7760388 DOI: 10.3390/plants9121687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/21/2020] [Accepted: 11/26/2020] [Indexed: 12/27/2022]
Abstract
Insights into genome size dynamics and its evolutionary impact remain limited by the lack of data for many plant groups. One of these is the genus Iris, of which only 53 out of c. 260 species have available genome sizes. In this study, we estimated the C-values for 41 species and subspecies of Iris mainly from the Eastern Mediterranean region. We constructed a phylogenetic framework to shed light on the distribution of genome sizes across subgenera and sections of Iris. Finally, we tested evolutionary models to explore the mode and tempo of genome size evolution during the radiation of section Oncocyclus. Iris as a whole displayed a great variety of C-values; however, they were unequally distributed across the subgenera and sections, suggesting that lineage-specific patterns of genome size diversification have taken place within the genus. The evolutionary model that best fitted our data was the speciational model, as changes in genome size appeared to be mainly associated with speciation events. These results suggest that genome size dynamics may have contributed to the radiation of Oncocyclus irises. In addition, our phylogenetic analysis provided evidence that supports the segregation of the Lebanese population currently attributed to Iris persica as a distinct species.
Collapse
Affiliation(s)
- Nour Abdel Samad
- Laboratoire Biodiversité et Génomique Fonctionnelle, Faculté des Sciences, Campus Sciences et Technologies, Université Saint-Joseph, Mar Roukos, Mkalles, BP: 1514 Riad el Solh, Beirut 1107 2050, Lebanon; (N.A.S.); (E.S.)
- Ecologie Systématique Evolution, Université Paris-Saclay, CNRS, AgroParisTech, 91400 Orsay, France;
| | - Oriane Hidalgo
- Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AB, UK; (K.S.); (I.J.L.)
- Institut Botànic de Barcelona (IBB, CSIC-Ajuntament de Barcelona), Passeig del Migdia s.n., 08038 Barcelona, Spain
- Correspondence: (O.H.); (M.B.D.-K.)
| | - Elie Saliba
- Laboratoire Biodiversité et Génomique Fonctionnelle, Faculté des Sciences, Campus Sciences et Technologies, Université Saint-Joseph, Mar Roukos, Mkalles, BP: 1514 Riad el Solh, Beirut 1107 2050, Lebanon; (N.A.S.); (E.S.)
| | - Sonja Siljak-Yakovlev
- Ecologie Systématique Evolution, Université Paris-Saclay, CNRS, AgroParisTech, 91400 Orsay, France;
| | - Kit Strange
- Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AB, UK; (K.S.); (I.J.L.)
| | - Ilia J. Leitch
- Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AB, UK; (K.S.); (I.J.L.)
| | - Magda Bou Dagher-Kharrat
- Laboratoire Biodiversité et Génomique Fonctionnelle, Faculté des Sciences, Campus Sciences et Technologies, Université Saint-Joseph, Mar Roukos, Mkalles, BP: 1514 Riad el Solh, Beirut 1107 2050, Lebanon; (N.A.S.); (E.S.)
- Correspondence: (O.H.); (M.B.D.-K.)
| |
Collapse
|
2
|
High and uneven levels of 45S rDNA site-number variation across wild populations of a diploid plant genus (Anacyclus, Asteraceae). PLoS One 2017; 12:e0187131. [PMID: 29088249 PMCID: PMC5663423 DOI: 10.1371/journal.pone.0187131] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 10/13/2017] [Indexed: 12/13/2022] Open
Abstract
The nuclear genome harbours hundreds to several thousand copies of ribosomal DNA. Despite their essential role in cellular ribogenesis few studies have addressed intrapopulation, interpopulation and interspecific levels of rDNA variability in wild plants. Some studies have assessed the extent of rDNA variation at the sequence and copy-number level with large sampling in several species. However, comparable studies on rDNA site number variation in plants, assessed with extensive hierarchical sampling at several levels (individuals, populations, species) are lacking. In exploring the possible causes for ribosomal loci dynamism, we have used the diploid genus Anacyclus (Asteraceae) as a suitable system to examine the evolution of ribosomal loci. To this end, the number and chromosomal position of 45S rDNA sites have been determined in 196 individuals from 47 populations in all Anacyclus species using FISH. The 45S rDNA site-number has been assessed in a significant sample of seed plants, which usually exhibit rather consistent features, except for polyploid plants. In contrast, the level of rDNA site-number variation detected in Anacyclus is outstanding in the context of angiosperms particularly regarding populations of the same species. The number of 45S rDNA sites ranged from four to 11, accounting for 14 karyological ribosomal phenotypes. Our results are not even across species and geographical areas, and show that there is no clear association between the number of 45S rDNA loci and the life cycle in Anacyclus. A single rDNA phenotype was detected in several species, but a more complex pattern that included intra-specific and intra-population polymorphisms was recorded in A. homogamos, A. clavatus and A. valentinus, three weedy species showing large and overlapping distribution ranges. It is likely that part of the cytogenetic changes and inferred dynamism found in these species have been triggered by genomic rearrangements resulting from contemporary hybridisation.
Collapse
|
3
|
Siljak-Yakovlev S, Godelle B, Zoldos V, Vallès J, Garnatje T, Hidalgo O. Evolutionary implications of heterochromatin and rDNA in chromosome number and genome size changes during dysploidy: A case study in Reichardia genus. PLoS One 2017; 12:e0182318. [PMID: 28792980 PMCID: PMC5549912 DOI: 10.1371/journal.pone.0182318] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 07/16/2017] [Indexed: 12/31/2022] Open
Abstract
In this study we showed that constitutive heterochromatin, GC-rich DNA and rDNA are implicated in chromosomal rearrangements during the basic chromosome number changing (dysploidy) in Reichardia genus. This small Mediterranean genus comprises 8–10 species and presents three basic chromosome numbers (x = 9, 8 and 7). To assess genome evolution and differentiation processes, studies were conducted in a dysploid series of six species: R. dichotoma, R. macrophylla and R. albanica (2n = 18), R. tingitana and R. gaditana (2n = 16), and R. picroides (2n = 14). The molecular phylogeny reconstruction comprised three additional species (R. crystallina and R. ligulata, 2n = 16 and R. intermedia, 2n = 14). Our results indicate that the way of dysploidy is descending. During this process, a positive correlation was observed between chromosome number and genome size, rDNA loci number and pollen size, although only the correlation between chromosome number and genome size is still recovered significant once considering the phylogenetic effect. Fluorescent in situ hybridisation also evidenced changes in number, position and organisation of two rDNA families (35S and 5S), including the reduction of loci number and, consequently, reduction in the number of secondary constrictions and nuclear organising regions from three to one per diploid genome. The potential mechanisms of chromosomal and genome evolution, strongly implicating heterochromatin, are proposed and discussed, with particular consideration for Reichardia genus.
Collapse
Affiliation(s)
- Sonja Siljak-Yakovlev
- Ecologie Systématique Evolution, CNRS, AgroParisTech, Univ. Paris-Sud, Université Paris-Saclay, Orsay, France
- * E-mail: (SY); (JV)
| | - Bernard Godelle
- Institut des Sciences de l’Evolution (CNRS-UMR 5554), Université Montpellier II, Place Eugène Bataillon, Montpellier, France
| | - Vlatka Zoldos
- Department of Biology, Division of Molecular Biology, University of Zagreb, Faculty of Science, Zagreb, Croatia
| | - Joan Vallès
- Laboratori de Botànica (UB) - Unitat associada al CSIC, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Barcelona, Catalonia, Spain
- * E-mail: (SY); (JV)
| | - Teresa Garnatje
- Institut Botànic de Barcelona (IBB-CSIC-ICUB), Barcelona, Catalonia, Spain
| | - Oriane Hidalgo
- Comparative Plant & Fungal Biology, Royal Botanic Gardens, Kew, Richmond, Surrey, United Kingdom
| |
Collapse
|
4
|
Carev I, Ruščić M, Skočibušić M, Maravić A, Siljak-Yakovlev S, Politeo O. Phytochemical and Cytogenetic Characterization of Centaurea solstitialis L. (Asteraceae) from Croatia. Chem Biodivers 2017; 14. [PMID: 27552682 DOI: 10.1002/cbdv.201600213] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 08/22/2016] [Indexed: 11/07/2022]
Abstract
The cytogenetic characterization of Centaurea solstitialis L. (Asteraceae) showed a chromosome number of 2n = 16. Karyotype is composed by four pairs of metacentric, two pairs of submetacentric and two pairs of subtelocentric chromosomes. Physical mapping of two rDNA probes revealed two loci of 35S and one locus of 5S rRNA genes. Chromomycin fluorochrome banding revealed that all rDNA loci were GC rich. The genome size (2C-value) of 1.95 pg classes this species in the group of very small genomes. Chemical composition of C. solstitialis volatile oil (VO) from Croatia, studied with gas chromatography-mass spectrometry showed dominant components as it follows: hexadecanoic acid, α-linolenic acid, germacrene D and heptacosane. Antioxidant capacity, measured by ferric reducing power assay and 2,2-diphenyl-1-picrylhydrazyl methods, as well as inhibition of acetyl- and butyrylcholinesterase of VO was lower comparing to a standard solutions. Volatile oil tested with disc diffusion method showed good inhibitory potential against Pseudomonas aeruginosa, Escherichia coli and all tested fungi: Candida albicans, Penicillium funiculosum and Aspergillus fumigatus. The microdilution method showed best activity against Chronobacter sakazakii and A. fumigatus.
Collapse
Affiliation(s)
- Ivana Carev
- Department of Biochemistry, Faculty of Chemistry and Technology, University of Split, Ruđera Boškovića 35, 21 000, Split, Croatia
| | - Mirko Ruščić
- Faculty of Natural Sciences, University of Split, Ruđera Boškovića 33, 21 000, Split, Croatia
| | - Mirjana Skočibušić
- Faculty of Natural Sciences, University of Split, Ruđera Boškovića 33, 21 000, Split, Croatia
| | - Ana Maravić
- Faculty of Natural Sciences, University of Split, Ruđera Boškovića 33, 21 000, Split, Croatia
| | - Sonja Siljak-Yakovlev
- Ecologie Systématique Evolution, University of Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, FR-91400, Orsay Cedex
| | - Olivera Politeo
- Department of Biochemistry, Faculty of Chemistry and Technology, University of Split, Ruđera Boškovića 35, 21 000, Split, Croatia
| |
Collapse
|
5
|
Abdel Samad N, Bou Dagher-Kharrat M, Hidalgo O, El Zein R, Douaihy B, Siljak-Yakovlev S. Unlocking the Karyological and Cytogenetic Diversity of Iris from Lebanon: Oncocyclus Section Shows a Distinctive Profile and Relative Stasis during Its Continental Radiation. PLoS One 2016; 11:e0160816. [PMID: 27525415 PMCID: PMC4985135 DOI: 10.1371/journal.pone.0160816] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 07/26/2016] [Indexed: 12/02/2022] Open
Abstract
Despite being an important target of conservation concern and horticultural interest, Lebanese irises yet have a confusing taxonomic history and species’ delimitation is often considered problematic, more especially among royal irises (Iris section Oncocyclus). Indeed, these irises of exceptionally large and spectacular flowers have radiated across Caucasus and eastern Mediterranean giving rise to a number of strict endemic taxa, many of them being considered under threat. Whilst efforts have mostly focused on clarifying the evolutionary relationships in the group based on morphological and molecular data, karyological and cytogenetic characters have been comparatively overlooked. In this study, we established for the first time the physical mapping of 35S rDNA loci and heterochromatin, and obtained karyo-morphological data for ten Lebanese Iris species belonging to four sections (Iris, Limniris, Oncocyclus and Scorpiris). Our results evidenced distinctive genomic profiles for each one of the sections, where Oncocyclus irises, while having the lowest chromosome numbers, exhibit both the highest number of 35S loci and CMA3+ sites. The continental radiation of royal irises has been accompanied by a relative karyological and cytogenetic stasis, even though some changes were observed regarding karyotype formula and asymmetry indexes. In addition to that, our results enabled taxonomic differentiation between I. germanica and I. mesopotamica–two taxa currently considered as synonyms–and highlighted the need for further studies on populations of I. persica and I. wallasiae in the Eastern Mediterranean Region.
Collapse
Affiliation(s)
- Nour Abdel Samad
- Faculté des Sciences, Département Sciences de la Vie et de la Terre, Laboratoire Caractérisation Génomique des Plantes, Campus Sciences et Technologies, Université Saint-Joseph, Mar Roukos Mkalles, Lebanon
- Ecologie, Systématique, Evolution, UMR 8079 Univ. Paris-Sud, AgroParisTech, Université Paris-Saclay, Bat. 360, 91405 Orsay, France
| | - Magda Bou Dagher-Kharrat
- Faculté des Sciences, Département Sciences de la Vie et de la Terre, Laboratoire Caractérisation Génomique des Plantes, Campus Sciences et Technologies, Université Saint-Joseph, Mar Roukos Mkalles, Lebanon
- * E-mail:
| | - Oriane Hidalgo
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AB, United Kingdom
| | - Rana El Zein
- Faculté des Sciences, Département Sciences de la Vie et de la Terre, Laboratoire Caractérisation Génomique des Plantes, Campus Sciences et Technologies, Université Saint-Joseph, Mar Roukos Mkalles, Lebanon
| | - Bouchra Douaihy
- Faculté des Sciences, Département Sciences de la Vie et de la Terre, Laboratoire Caractérisation Génomique des Plantes, Campus Sciences et Technologies, Université Saint-Joseph, Mar Roukos Mkalles, Lebanon
| | - Sonja Siljak-Yakovlev
- Ecologie, Systématique, Evolution, UMR 8079 Univ. Paris-Sud, AgroParisTech, Université Paris-Saclay, Bat. 360, 91405 Orsay, France
| |
Collapse
|
6
|
Olanj N, Garnatje T, Sonboli A, Vallès J, Garcia S. The striking and unexpected cytogenetic diversity of genus Tanacetum L. (Asteraceae): a cytometric and fluorescent in situ hybridisation study of Iranian taxa. BMC PLANT BIOLOGY 2015; 15:174. [PMID: 26152193 PMCID: PMC4494159 DOI: 10.1186/s12870-015-0564-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 06/26/2015] [Indexed: 05/15/2023]
Abstract
BACKGROUND Although karyologically well studied, the genus Tanacetum (Asteraceae) is poorly known from the perspective of molecular cytogenetics. The prevalence of polyploidy, including odd ploidy warranted an extensive cytogenetic study. We studied several species native to Iran, one of the most important centres of diversity of the genus. We aimed to characterise Tanacetum genomes through fluorochrome banding, fluorescent in situ hybridisation (FISH) of rRNA genes and the assessment of genome size by flow cytometry. We appraise the effect of polyploidy and evaluate the existence of intraspecific variation based on the number and distribution of GC-rich bands and rDNA loci. Finally, we infer ancestral genome size and other cytogenetic traits considering phylogenetic relationships within the genus. RESULTS We report first genome size (2C) estimates ranging from 3.84 to 24.87 pg representing about 11 % of those recognised for the genus. We found striking cytogenetic diversity both in the number of GC-rich bands and rDNA loci. There is variation even at the population level and some species have undergone massive heterochromatic or rDNA amplification. Certain morphometric data, such as pollen size or inflorescence architecture, bear some relationship with genome size. Reconstruction of ancestral genome size, number of CMA+ bands and number of rDNA loci show that ups and downs have occurred during the evolution of these traits, although genome size has mostly increased and the number of CMA+ bands and rDNA loci have decreased in present-day taxa compared with ancestral values. CONCLUSIONS Tanacetum genomes are highly unstable in the number of GC-rich bands and rDNA loci, although some patterns can be established at the diploid and tetraploid levels. In particular, aneuploid taxa and some odd ploidy species show greater cytogenetic instability than the rest of the genus. We have also confirmed a linked rDNA arrangement for all the studied Tanacetum species. The labile scenario found in Tanacetum proves that some cytogenetic features previously regarded as relatively constant, or even diagnostic, can display high variability, which is better interpreted within a phylogenetic context.
Collapse
Affiliation(s)
- Nayyereh Olanj
- Department of Biology, Faculty of Basic Science, Malayer University, Malayer, Iran.
- Laboratori de Botànica - Unitat associada CSIC, Facultat de Farmàcia, Universitat de Barcelona, Avinguda Joan XXIII s/n, 08028, Barcelona, Catalonia, Spain.
| | - Teresa Garnatje
- Institut Botànic de Barcelona (IBB-CSIC-ICUB), Passeig del Migdia s/n, Parc de Montjuïc, 08038, Barcelona, Catalonia, Spain.
| | - Ali Sonboli
- Department of Biology, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Evin, 1983963113, Tehran, Iran.
| | - Joan Vallès
- Laboratori de Botànica - Unitat associada CSIC, Facultat de Farmàcia, Universitat de Barcelona, Avinguda Joan XXIII s/n, 08028, Barcelona, Catalonia, Spain.
| | - Sònia Garcia
- Laboratori de Botànica - Unitat associada CSIC, Facultat de Farmàcia, Universitat de Barcelona, Avinguda Joan XXIII s/n, 08028, Barcelona, Catalonia, Spain.
| |
Collapse
|
7
|
Vitales D, García-Fernández A, Pellicer J, Vallès J, Santos-Guerra A, Cowan RS, Fay MF, Hidalgo O, Garnatje T. Key processes for Cheirolophus (Asteraceae) diversification on oceanic islands inferred from AFLP data. PLoS One 2014; 9:e113207. [PMID: 25412495 PMCID: PMC4239036 DOI: 10.1371/journal.pone.0113207] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 10/21/2014] [Indexed: 11/18/2022] Open
Abstract
The radiation of the genus Cheirolophus (Asteraceae) in Macaronesia constitutes a spectacular case of rapid diversification on oceanic islands. Twenty species - nine of them included in the IUCN Red List of Threatened Species - have been described to date inhabiting the Madeiran and Canarian archipelagos. A previous phylogenetic study revealed that the diversification of Cheirolophus in Macaronesia started less than 2 Ma. As a result of such an explosive speciation process, limited phylogenetic resolution was reported, mainly due to the low variability of the employed molecular markers. In the present study, we used highly polymorphic AFLP markers to i) evaluate species' boundaries, ii) infer their evolutionary relationships and iii) investigate the patterns of genetic diversity in relation to the potential processes likely involved in the radiation of Cheirolophus. One hundred and seventy-two individuals representing all Macaronesian Cheirolophus species were analysed using 249 AFLP loci. Our results suggest that geographic isolation played an important role in this radiation process. This was likely driven by the combination of poor gene flow capacity and a good ability for sporadic long-distance colonisations. In addition, we also found some traces of introgression and incipient ecological adaptation, which could have further enhanced the extraordinary diversification of Cheirolophus in Macaronesia. Last, we hypothesize that current threat categories assigned to Macaronesian Cheirolophus species do not reflect their respective evolutionary relevance, so future evaluations of their conservation status should take into account the results presented here.
Collapse
Affiliation(s)
- Daniel Vitales
- Laboratori de Botànica – Unitat associada CSIC, Facultat de Farmàcia, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Alfredo García-Fernández
- Institut Botànic de Barcelona (IBB-CSIC-ICUB), Barcelona, Catalonia, Spain
- Área de Biodiversidad y Conservación, Universidad Rey Juan Carlos, Móstoles, Madrid, Spain
| | - Jaume Pellicer
- Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey, United Kingdom
| | - Joan Vallès
- Laboratori de Botànica – Unitat associada CSIC, Facultat de Farmàcia, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | | | - Robyn S. Cowan
- Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey, United Kingdom
| | - Michael F. Fay
- Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey, United Kingdom
| | - Oriane Hidalgo
- Laboratori de Botànica – Unitat associada CSIC, Facultat de Farmàcia, Universitat de Barcelona, Barcelona, Catalonia, Spain
- Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey, United Kingdom
| | - Teresa Garnatje
- Institut Botànic de Barcelona (IBB-CSIC-ICUB), Barcelona, Catalonia, Spain
| |
Collapse
|
8
|
Garcia S, Gálvez F, Gras A, Kovařík A, Garnatje T. Plant rDNA database: update and new features. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2014; 2014:bau063. [PMID: 24980131 PMCID: PMC4075780 DOI: 10.1093/database/bau063] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The Plant rDNA database (www.plantrdnadatabase.com) is an open access online resource providing detailed information on numbers, structures and positions of 5S and 18S-5.8S-26S (35S) ribosomal DNA loci. The data have been obtained from >600 publications on plant molecular cytogenetics, mostly based on fluorescent in situ hybridization (FISH). This edition of the database contains information on 1609 species derived from 2839 records, which means an expansion of 55.76 and 94.45%, respectively. It holds the data for angiosperms, gymnosperms, bryophytes and pteridophytes available as of June 2013. Information from publications reporting data for a single rDNA (either 5S or 35S alone) and annotation regarding transcriptional activity of 35S loci now appears in the database. Preliminary analyses suggest greater variability in the number of rDNA loci in gymnosperms than in angiosperms. New applications provide ideograms of the species showing the positions of rDNA loci as well as a visual representation of their genome sizes. We have also introduced other features to boost the usability of the Web interface, such as an application for convenient data export and a new section with rDNA–FISH-related information (mostly detailing protocols and reagents). In addition, we upgraded and/or proofread tabs and links and modified the website for a more dynamic appearance. This manuscript provides a synopsis of these changes and developments. Database URL: http://www.plantrdnadatabase.com
Collapse
Affiliation(s)
- Sònia Garcia
- Laboratori de Botànica-Unitat associada CSIC, Facultat de Farmàcia, Universitat de Barcelona, Barcelona, 08028 Catalonia, Spain, BioScripts - Centro de Investigación y Desarrollo de Recursos Científicos, Sevilla, 41012 Andalusia, Spain, Institute of Biophysics, Academy of Sciences of the Czech Republic. Brno, CZ-612 65, Czech Republic and Institut Botànic de Barcelona (IBB-CSIC-ICUB). Barcelona, 08038 Catalonia, Spain
| | - Francisco Gálvez
- Laboratori de Botànica-Unitat associada CSIC, Facultat de Farmàcia, Universitat de Barcelona, Barcelona, 08028 Catalonia, Spain, BioScripts - Centro de Investigación y Desarrollo de Recursos Científicos, Sevilla, 41012 Andalusia, Spain, Institute of Biophysics, Academy of Sciences of the Czech Republic. Brno, CZ-612 65, Czech Republic and Institut Botànic de Barcelona (IBB-CSIC-ICUB). Barcelona, 08038 Catalonia, Spain
| | - Airy Gras
- Laboratori de Botànica-Unitat associada CSIC, Facultat de Farmàcia, Universitat de Barcelona, Barcelona, 08028 Catalonia, Spain, BioScripts - Centro de Investigación y Desarrollo de Recursos Científicos, Sevilla, 41012 Andalusia, Spain, Institute of Biophysics, Academy of Sciences of the Czech Republic. Brno, CZ-612 65, Czech Republic and Institut Botànic de Barcelona (IBB-CSIC-ICUB). Barcelona, 08038 Catalonia, Spain
| | - Aleš Kovařík
- Laboratori de Botànica-Unitat associada CSIC, Facultat de Farmàcia, Universitat de Barcelona, Barcelona, 08028 Catalonia, Spain, BioScripts - Centro de Investigación y Desarrollo de Recursos Científicos, Sevilla, 41012 Andalusia, Spain, Institute of Biophysics, Academy of Sciences of the Czech Republic. Brno, CZ-612 65, Czech Republic and Institut Botànic de Barcelona (IBB-CSIC-ICUB). Barcelona, 08038 Catalonia, Spain
| | - Teresa Garnatje
- Laboratori de Botànica-Unitat associada CSIC, Facultat de Farmàcia, Universitat de Barcelona, Barcelona, 08028 Catalonia, Spain, BioScripts - Centro de Investigación y Desarrollo de Recursos Científicos, Sevilla, 41012 Andalusia, Spain, Institute of Biophysics, Academy of Sciences of the Czech Republic. Brno, CZ-612 65, Czech Republic and Institut Botànic de Barcelona (IBB-CSIC-ICUB). Barcelona, 08038 Catalonia, Spain
| |
Collapse
|