1
|
You C, Wen R, Zhang Z, Cheng G, Zhang Y, Li N, Deng C, Li S, Gao W. Development and applications of a collection of single copy gene-based cytogenetic DNA markers in garden asparagus. FRONTIERS IN PLANT SCIENCE 2022; 13:1010664. [PMID: 36247554 PMCID: PMC9559582 DOI: 10.3389/fpls.2022.1010664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
Garden asparagus (Asparagus officinalis, 2n = 2x = 20 chromosomes) is an important dioecious vegetable crop and a model species for studying sex chromosome formation and evolution. However, few molecular cytogenetic studies on garden asparagus have been reported because of its small metaphase chromosomes, the scarcity of distinguished cytogenetic markers, and the high content of repetitive sequences. In this study, a set of single copy genes free of repetitive sequences with sizes ranging from 4.3 kb to 8.2 kb were screened and used as probes for fluorescence in situ hybridization (FISH) to identify individual chromosomes of garden asparagus. The chromosome-specific signal distribution patterns of these probes enabled the distinguishment of each pair of chromosomes. The sequence assembly and cytogenetic map were successfully integrated, and the results confirmed that the chromosome 1 representing the sex chromosome in the genome assembly is chromosome 5 in the karyotype analysis. The cytogenetic identification of the male-specific region of the Y chromosome (MSY) was implemented using a mixed probe derived from a number of MSY-specific single copy sequences. In addition, the chromosome orthologous relationship between garden asparagus (A1-A10, karyotypic analysis) and its hermaphrodite close relative, A. setaceus (B1-B10, karyotypic analysis), was analyzed using this collection of chromosome-specific cytological markers. The results showed that B3 is the ortholog of sex chromosome A5 and thus may represent the ancestral autosome of the current sex chromosome in garden asparagus. Chromosomes B5, B4, B1, B8, B7, and B9 are the orthologs of A2, A3, A4, A7, A8, and A10, respectively. The chromosome identification, cytogenetic recognition of MSY, and the orthologous relationship analysis between garden asparagus and A. setaceus are valuable for the further investigation of the sex chromosome emergence and evolutionary mechanism of garden asparagus and genome structure evolution in the Asparagus genus.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Shufen Li
- *Correspondence: Wujun Gao, ; Shufen Li,
| | - Wujun Gao
- *Correspondence: Wujun Gao, ; Shufen Li,
| |
Collapse
|
2
|
Song T, Zhou M, Yuan Y, Yu J, Cai H, Li J, Chen Y, Bai Y, Zhou G, Cui G. Chromosome-Scale Reference Genome of Amphicarpaea edgeworthii: A New Resource for Amphicarpic Plants Research and Complex Flowering Pattern. FRONTIERS IN PLANT SCIENCE 2021; 12:770660. [PMID: 34868169 PMCID: PMC8637744 DOI: 10.3389/fpls.2021.770660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
Amphicarpaea edgeworthii, an annual twining herb, is a widely distributed species and an attractive model for studying complex flowering types and evolutionary mechanisms of species. Herein, we have generated a high-quality assembly of A. edgeworthii by using a combination of PacBio, 10× Genomics libraries, and Hi-C mapping technologies. The final 11 chromosome-level scaffolds covered 90.61% of the estimated genome (343.78Mb), which is a chromosome-scale assembled genome of an amphicarpic plant. Subsequently, we characterized the genetic diversity and population structure of A. edgeworthii species by resequencing individuals collected from their natural area of distribution. Using transcriptome profiling, we observed that specific phenotypes are regulated by a complex network of light, hormones, and MADS-box gene families. These data are beneficial for the discovery of genes that control major agronomic traits and spur genetic improvement of and functional genetic studies in legumes, as well as supply comparative genetic resources for other amphicarpic plants.
Collapse
Affiliation(s)
- Tingting Song
- Department of Grassland Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Mengyan Zhou
- Novogene Bioinformatics Institute, Beijing, China
| | - Yuying Yuan
- Department of Grassland Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Jinqiu Yu
- Department of Grassland Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Hua Cai
- Department of Grassland Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Jiawei Li
- Department of Grassland Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Yajun Chen
- Department of Grassland Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Yan Bai
- Novogene Bioinformatics Institute, Beijing, China
| | - Gang Zhou
- Novogene Bioinformatics Institute, Beijing, China
| | - Guowen Cui
- Department of Grassland Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| |
Collapse
|
3
|
Comparatively Barcoded Chromosomes of Brachypodium Perennials Tell the Story of Their Karyotype Structure and Evolution. Int J Mol Sci 2019; 20:ijms20225557. [PMID: 31703351 PMCID: PMC6888173 DOI: 10.3390/ijms20225557] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 10/31/2019] [Accepted: 11/02/2019] [Indexed: 11/17/2022] Open
Abstract
The Brachypodium genus is an informative model system for studying grass karyotype organization. Previous studies of a limited number of species and reference chromosomes have not provided a comprehensive picture of the enigmatic phylogenetic relationships in the genus. Comparative chromosome barcoding, which enables the reconstruction of the evolutionary history of individual chromosomes and their segments, allowed us to infer the relationships between putative ancestral karyotypes of extinct species and extant karyotypes of current species. We used over 80 chromosome-specific BAC (bacterial artificial chromosome) clones derived from five reference chromosomes of B. distachyon as probes against the karyotypes of twelve accessions representing five diploid and polyploid Brachypodium perennials. The results showed that descending dysploidy is common in Brachypodium and occurs primarily via nested chromosome fusions. Brachypodiumdistachyon was rejected as a putative ancestor for allotetraploid perennials and B. stacei for B. mexicanum. We propose two alternative models of perennial polyploid evolution involving either the incorporation of a putative x = 5 ancestral karyotype with different descending dysploidy patterns compared to B. distachyon chromosomes or hybridization of two x = 9 ancestors followed by genome doubling and descending dysploidy. Details of the karyotype structure and evolution in several Brachypodium perennials are revealed for the first time.
Collapse
|
4
|
Lusinska J, Majka J, Betekhtin A, Susek K, Wolny E, Hasterok R. Chromosome identification and reconstruction of evolutionary rearrangements in Brachypodium distachyon, B. stacei and B. hybridum. ANNALS OF BOTANY 2018; 122:445-459. [PMID: 29893795 PMCID: PMC6110338 DOI: 10.1093/aob/mcy086] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 05/12/2018] [Indexed: 05/22/2023]
Abstract
BACKGROUND AND AIMS The Brachypodium genus represents a useful model system to study grass genome organization. Palaeogenomic analyses (e.g. Murat F, Armero A, Pont C, Klopp C, Salse J. 2017. Reconstructing the genome of the most recent common ancestor of flowering plants. Nature Genetics49: 490-496) have identified polyploidization and dysploidy as the prime mechanisms driving the diversity of plant karyotypes and nested chromosome fusions (NCFs) crucial for shaping grass chromosomes. This study compares the karyotype structure and evolution in B. distachyon (genome Bd), B. stacei (genome Bs) and in their putative allotetraploid B. hybridum (genomes BdBs). METHODS Brachypodium chromosomes were measured and identified using multicolour fluorescence in situ hybridization (mcFISH). For higher resolution, comparative chromosome barcoding was developed using sets of low-repeat, physically mapped B. distachyon-derived bacterial artificial chromosome (BAC) clones. KEY RESULTS All species had rather small chromosomes, and essentially all in the Bs genome were morphometrically indistinguishable. Seven BACs combined with two rDNA-based probes provided unambiguous and reproducible chromosome discrimination. Comparative chromosome barcoding revealed NCFs that contributed to the reduction in the x = 12 chromosome number that has been suggested for the intermediate ancestral grass karyotype. Chromosome Bd3 derives from two NCFs of three ancestral chromosomes (Os2, Os8, Os10). Chromosome Bs6 shows an ancient Os8/Os10 NCF, whilst Bs4 represents Os2 only. Chromosome Bd4 originated from a descending dysploidy that involves two NCFs of Os12, Os9 and Os11. The specific distribution of BACs along Bs9 and Bs5, in both B. stacei and B. hybridum, suggests a Bs genome-specific Robertsonian rearrangement. CONCLUSIONS mcFISH-based karyotyping identifies all chromosomes in Brachypodium annuals. Comparative chromosome barcoding reveals rearrangements responsible for the diverse organization of Bd and Bs genomes and provides new data regarding karyotype evolution since the split of the two diploids. The fact that no chromosome rearrangements were observed in B. hybridum compared with the karyotypes of its phylogenetic ancestors suggests prolonged genome stasis after the formation of the allotetraploid.
Collapse
Affiliation(s)
- Joanna Lusinska
- Department of Plant Anatomy and Cytology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Joanna Majka
- Department of Plant Anatomy and Cytology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Alexander Betekhtin
- Department of Plant Anatomy and Cytology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Karolina Susek
- Department of Plant Anatomy and Cytology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Elzbieta Wolny
- Department of Plant Anatomy and Cytology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Robert Hasterok
- Department of Plant Anatomy and Cytology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
- For correspondence. E-mail
| |
Collapse
|
5
|
Li Z, Bi Y, Wang X, Wang Y, Yang S, Zhang Z, Chen J, Lou Q. Chromosome identification in Cucumis anguria revealed by cross-species single-copy gene FISH. Genome 2018; 61:397-404. [DOI: 10.1139/gen-2017-0235] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cucumis anguria is a potential genetic resource for improving crops of the genus Cucumis, owing to its broad-spectrum resistance. However, few cytogenetic studies on C. anguria have been reported because of its small metaphase chromosomes and the scarcity of distinguished chromosomal landmarks. In this study, 14 single-copy genes from cucumber and rDNAs were used as probes for FISH to identify the individual chromosomes of C. anguria. The distinctive signal distribution patterns of the probes allowed us to distinguish each chromosome of C. anguria (A01–A12). Further, detailed chromosome characteristics were obtained through pachytene chromosome FISH. The lengths of pachytene chromosomes varied from 54.80 to 143.41 μm. The proportion of heterochromatin regions varied from 13.56% to 63.86%. Finally, the chromosomal homeologous relationship between C. anguria and cucumber (C1–C7) was analyzed. The results showed that A06 + A09, A03 + A12, A02 + A04, and A01 + A11 were homeologs of C1, C2, C3, and C6, respectively. Furthemore, chromosomes A08, A10, and A05 were homeologs of C4, C5, and C7, respectively. Chromosome identification and homeologous relationship analysis between C. anguria and cucumber lay the foundation for further research of genome structure evolution in species of Cucumis.
Collapse
Affiliation(s)
- Ziang Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yunfei Bi
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xing Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yunzhu Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuqiong Yang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhentao Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jinfeng Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Qunfeng Lou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
6
|
Karafiátová M, Bartoš J, Doležel J. Localization of Low-Copy DNA Sequences on Mitotic Chromosomes by FISH. Methods Mol Biol 2017; 1429:49-64. [PMID: 27511166 DOI: 10.1007/978-1-4939-3622-9_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Fluorescence in situ hybridization (FISH) is a widely used method to localize DNA sequences on mitotic and meiotic chromosomes and interphase nuclei. It was developed in early 1980s and since then it has contributed to numerous studies and important discoveries. Over the decades, the protocol was modified for ease of use, allowing for localizing multiple probes simultaneously and increasing its sensitivity and specificity. Despite the continuous improvements, the ability to detect short single-copy sequences of only a few kilobases or less, such as genes, remains limited. Here, we provide a detailed protocol for detection of short, single- or low-copy sequences on plant mitotic metaphase chromosomes.
Collapse
Affiliation(s)
- Miroslava Karafiátová
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, Šlechtitelů 31, CZ-78374, Olomouc, Czech Republic.
| | - Jan Bartoš
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, Šlechtitelů 31, CZ-78374, Olomouc, Czech Republic
| | - Jaroslav Doležel
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, Šlechtitelů 31, CZ-78374, Olomouc, Czech Republic
| |
Collapse
|
7
|
Majka J, Książczyk T, Kiełbowicz-Matuk A, Kopecký D, Kosmala A. Exploiting repetitive sequences and BAC clones in Festuca pratensis karyotyping. PLoS One 2017; 12:e0179043. [PMID: 28591168 PMCID: PMC5462415 DOI: 10.1371/journal.pone.0179043] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 05/23/2017] [Indexed: 11/24/2022] Open
Abstract
The Festuca genus is thought to be the most numerous genus of the Poaceae family. One of the most agronomically important forage grasses, Festuca pratensis Huds. is treated as a model plant to study the molecular mechanisms associated with tolerance to winter stresses, including frost. However, the precise mapping of the genes governing stress tolerance in this species is difficult as its karyotype remains unrecognized. Only two F. pratensis chromosomes with 35S and 5S rDNA sequences can be easily identified, but its remaining chromosomes have not been distinguished to date. Here, two libraries derived from F. pratensis nuclear DNA with various contents of repetitive DNA sequences were used as sources of molecular probes for fluorescent in situ hybridisation (FISH), a BAC library and a library representing sequences most frequently present in the F. pratensis genome. Using FISH, six groups of DNA sequences were revealed in chromosomes on the basis of their signal position, including dispersed-like sequences, chromosome painting-like sequences, centromeric-like sequences, knob-like sequences, a group without hybridization signals, and single locus-like sequences. The last group was exploited to develop cytogenetic maps of diploid and tetraploid F. pratensis, which are presented here for the first time and provide a remarkable progress in karyotype characterization.
Collapse
Affiliation(s)
- Joanna Majka
- Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland
- * E-mail:
| | - Tomasz Książczyk
- Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland
| | | | - David Kopecký
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Arkadiusz Kosmala
- Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland
| |
Collapse
|
8
|
Zhao Y, Yu F, Liu R, Dou Q. Isolation and characterization of chromosomal markers in Poa pratensis. Mol Cytogenet 2017; 10:5. [PMID: 28293296 PMCID: PMC5345224 DOI: 10.1186/s13039-017-0307-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 02/21/2017] [Indexed: 11/22/2022] Open
Abstract
Background Poa pratensis L. is a turf grass and forage crop used worldwide. Being a facultative apomictic species, P. pratensis has a highly variable chromosome number. Chromosomal markers constitute a powerful tool for chromosome identification and for various aspects of genomic research. However, currently, no chromosomal markers are available for P. pratensis. Results Four novel chromosome markers were isolated from a screen of Cot-1 DNA libraries, combined with fluorescence in situ hybridization (FISH) in Poa pratensis. Three tandemly repetitive sequences (PpTR-1, PpTR-2, and PpTR-3) were characterized as subtelomeric. Monomers of 318 bp, 189 bp and 189 bp were identified in PpTR-1, PpTR-2, and PpTR-3, respectively. One tandemly repetitive sequence (PpCR-1) was shown to be centromeric or pericentromeric, and it had a monomer of 27 bp. The distribution patterns of PpTR-1, PpTR-2, and PpTR-3 were highly conserved across different P. pratensis cultivars and in the distantly related Poa species, whereas PpCR-1 was conserved across different P. pratensis cultivars, but less conserved across Poa species. Conclusion In this study, we report the identification and characterization of four novel chromosomal markers in P. pratensis. These chromosomal markers are powerful tools for accurate assessment of chromosome count, genomic and phylogenetic analyses, as well as studies of apomixis in P. pratensis. Electronic supplementary material The online version of this article (doi:10.1186/s13039-017-0307-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yanyan Zhao
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, the Chinese Academy of Sciences, Xining, 810008 China
| | - Feng Yu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, the Chinese Academy of Sciences, Xining, 810008 China
| | - Ruijuan Liu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, the Chinese Academy of Sciences, Xining, 810008 China
| | - Quanwen Dou
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, the Chinese Academy of Sciences, Xining, 810008 China
| |
Collapse
|
9
|
Comprehensive cytological characterization of the Gossypium hirsutum genome based on the development of a set of chromosome cytological markers. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.cj.2016.04.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|