1
|
Hao F, Liu X, Zhou B, Tian Z, Zhou L, Zong H, Qi J, He J, Zhang Y, Zeng P, Li Q, Wang K, Xia K, Guo X, Li L, Shao W, Zhang B, Li S, Yang H, Hui L, Chen W, Peng L, Liu F, Rong ZQ, Peng Y, Zhu W, McCallum JA, Li Z, Xu X, Yang H, Macknight RC, Wang W, Cai J. Chromosome-level genomes of three key Allium crops and their trait evolution. Nat Genet 2023; 55:1976-1986. [PMID: 37932434 DOI: 10.1038/s41588-023-01546-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 09/20/2023] [Indexed: 11/08/2023]
Abstract
Allium crop breeding remains severely hindered due to the lack of high-quality reference genomes. Here we report high-quality chromosome-level genome assemblies for three key Allium crops (Welsh onion, garlic and onion), which are 11.17 Gb, 15.52 Gb and 15.78 Gb in size with the highest recorded contig N50 of 507.27 Mb, 109.82 Mb and 81.66 Mb, respectively. Beyond revealing the genome evolutionary process of Allium species, our pathogen infection experiments and comparative metabolomic and genomic analyses showed that genes encoding enzymes involved in the metabolic pathway of Allium-specific flavor compounds may have evolved from an ancient uncharacterized plant defense system widely existing in many plant lineages but extensively boosted in alliums. Using in situ hybridization and spatial RNA sequencing, we obtained an overview of cell-type categorization and gene expression changes associated with spongy mesophyll cell expansion during onion bulb formation, thus indicating the functional roles of bulb formation genes.
Collapse
Affiliation(s)
- Fei Hao
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
- Center of Special Environmental Biomechanics & Biomedical Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Xue Liu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Botong Zhou
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Zunzhe Tian
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Lina Zhou
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Hang Zong
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Jiyan Qi
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Juan He
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Yongting Zhang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Peng Zeng
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Qiong Li
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Kai Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Keke Xia
- State Key Laboratory of Agricultural Genomics, BGI, Shenzhen, China
| | - Xing Guo
- State Key Laboratory of Agricultural Genomics, BGI, Shenzhen, China
- BGI Research, Wuhan, China
| | - Li Li
- State Key Laboratory of Agricultural Genomics, BGI, Shenzhen, China
| | - Wenwen Shao
- State Key Laboratory of Agricultural Genomics, BGI, Shenzhen, China
| | | | - Shengkang Li
- State Key Laboratory of Agricultural Genomics, BGI, Shenzhen, China
| | - Haifeng Yang
- Lianyungang Academy of Agricultural Sciences, Lianyungang, China
| | - Linchong Hui
- Lianyungang Academy of Agricultural Sciences, Lianyungang, China
| | - Wei Chen
- Lianyungang Academy of Agricultural Sciences, Lianyungang, China
| | - Lixin Peng
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning, China
| | - Feipeng Liu
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University, Xi'an, China
| | - Zi-Qiang Rong
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University, Xi'an, China
| | - Yingmei Peng
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Wenbo Zhu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - John A McCallum
- The New Zealand Institute for Plant and Food Research, Christchurch, New Zealand
| | - Zhen Li
- Department of Plant Biotechnology and Bioinformatics, Ghent University and VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Xun Xu
- State Key Laboratory of Agricultural Genomics, BGI, Shenzhen, China.
- Guangdong Provincial Key Laboratory of Genome Read and Write, Shenzhen, China.
| | - Hui Yang
- Center of Special Environmental Biomechanics & Biomedical Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.
| | | | - Wen Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China.
| | - Jing Cai
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China.
| |
Collapse
|
2
|
Ramos LC, Báez M, Fuchs J, Houben A, Carvalho R, Pedrosa-Harand A. Differential Repeat Accumulation in the Bimodal Karyotype of Agave L. Genes (Basel) 2023; 14:491. [PMID: 36833420 PMCID: PMC9956584 DOI: 10.3390/genes14020491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/10/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
The genus Agave presents a bimodal karyotype with x = 30 (5L, large, +25S, small chromosomes). Bimodality within this genus is generally attributed to allopolyploidy in the ancestral form of Agavoideae. However, alternative mechanisms, such as the preferential accumulation of repetitive elements at the macrochromosomes, could also be important. Aiming to understand the role of repetitive DNA within the bimodal karyotype of Agave, genomic DNA from the commercial hybrid 11648 (2n = 2x = 60, 6.31 Gbp) was sequenced at low coverage, and the repetitive fraction was characterized. In silico analysis showed that ~67.6% of the genome is mainly composed of different LTR retrotransposon lineages and one satellite DNA family (AgSAT171). The satellite DNA localized at the centromeric regions of all chromosomes; however, stronger signals were observed for 20 of the macro- and microchromosomes. All transposable elements showed a dispersed distribution, but not uniform across the length of the chromosomes. Different distribution patterns were observed for different TE lineages, with larger accumulation at the macrochromosomes. The data indicate the differential accumulation of LTR retrotransposon lineages at the macrochromosomes, probably contributing to the bimodality. Nevertheless, the differential accumulation of the satDNA in one group of macro- and microchromosomes possibly reflects the hybrid origin of this Agave accession.
Collapse
Affiliation(s)
- Lamonier Chaves Ramos
- Laboratory of Plant Cytogenetics, Graduate Program in Agronomy, Genetic Plant Breeding—PPGAMGP, Department of Agronomy, Federal Rural University of Pernambuco, Recife 52171-900, Brazil
- Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Federal University of Pernambuco, Recife 50670-420, Brazil
| | - Mariana Báez
- Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Federal University of Pernambuco, Recife 50670-420, Brazil
- Plant Breeding Department, University of Bonn, Katzenburgweg 5, 53115 Bonn, Germany
| | - Joerg Fuchs
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Stadt Seeland, Germany
| | - Andreas Houben
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Stadt Seeland, Germany
| | - Reginaldo Carvalho
- Laboratory of Plant Cytogenetics, Graduate Program in Agronomy, Genetic Plant Breeding—PPGAMGP, Department of Agronomy, Federal Rural University of Pernambuco, Recife 52171-900, Brazil
| | - Andrea Pedrosa-Harand
- Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Federal University of Pernambuco, Recife 50670-420, Brazil
| |
Collapse
|
3
|
Khandagale K, Krishna R, Roylawar P, Ade AB, Benke A, Shinde B, Singh M, Gawande SJ, Rai A. Omics approaches in Allium research: Progress and way ahead. PeerJ 2020; 8:e9824. [PMID: 32974094 PMCID: PMC7486827 DOI: 10.7717/peerj.9824] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 08/05/2020] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The genus Allium (Family: Amaryllidaceae) is an economically important group of crops cultivated worldwide for their use as a vegetable and spices. Alliums are also well known for their nutraceutical properties. Among alliums, onion, garlic, leek, and chives cultivated worldwide. Despite their substantial economic and medicinal importance, the genome sequence of any of the Allium is not available, probably due to their large genome sizes. Recently evolved omics technologies are highly efficient and robust in elucidating molecular mechanisms of several complex life processes in plants. Omics technologies, such as genomics, transcriptomics, proteomics, metabolomics, metagenomics, etc. have the potential to open new avenues in research and improvement of allium crops where genome sequence information is limited. A significant amount of data has been generated using these technologies for various Allium species; it will help in understanding the key traits in Allium crops such as flowering, bulb development, flavonoid biosynthesis, male sterility and stress tolerance at molecular and metabolite level. This information will ultimately assist us in speeding up the breeding in Allium crops. METHOD In the present review, major omics approaches, and their progress, as well as potential applications in Allium crops, could be discussed in detail. RESULTS Here, we have discussed the recent progress made in Allium research using omics technologies such as genomics, transcriptomics, micro RNAs, proteomics, metabolomics, and metagenomics. These omics interventions have been used in alliums for marker discovery, the study of the biotic and abiotic stress response, male sterility, organ development, flavonoid and bulb color, micro RNA discovery, and microbiome associated with Allium crops. Further, we also emphasized the integrated use of these omics platforms for a better understanding of the complex molecular mechanisms to speed up the breeding programs for better cultivars. CONCLUSION All the information and literature provided in the present review throws light on the progress and potential of omics platforms in the research of Allium crops. We also mentioned a few research areas in Allium crops that need to be explored using omics technologies to get more insight. Overall, alliums are an under-studied group of plants, and thus, there is tremendous scope and need for research in Allium species.
Collapse
Affiliation(s)
- Kiran Khandagale
- Department of Botany, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Ram Krishna
- ICAR-Directorate of Onion and Garlic Research, Rajgurunagar, India
| | - Praveen Roylawar
- Department of Botany, S. N. Arts, D. J. M. Commerce and B. N. S. Science College, Sangamner, India
| | - Avinash B. Ade
- Department of Botany, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Ashwini Benke
- ICAR-Directorate of Onion and Garlic Research, Rajgurunagar, India
| | - Bharat Shinde
- Vidya Pratishthans’s Arts Science and commerce college, Baramati, India
| | - Major Singh
- ICAR-Directorate of Onion and Garlic Research, Rajgurunagar, India
| | | | - Ashutosh Rai
- Crop Improvement, ICAR-Indian Institute of Vegetable Research, Varanasi, India
| |
Collapse
|
4
|
Identification and characterization of abundant repetitive sequences in Allium cepa. Sci Rep 2019; 9:16756. [PMID: 31727905 PMCID: PMC6856378 DOI: 10.1038/s41598-019-52995-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 10/26/2019] [Indexed: 01/01/2023] Open
Abstract
Species of the genus Allium are well known for their large genomes. Allium cepa is of great economic significance. Among vegetables, it ranks second after tomato in terms of the global production value. However, there is limited genomics information available on A. cepa. In this study, we sequenced the A. cepa genome at low-coverage and annotated repetitive sequences by using a combination of next-generation sequencing (NGS) and bioinformatics tools. Nearly 92% of 16 Gb haploid onion genome were defined as repetitive sequences, organized in 162 clusters of at least 0.01 percent of the genome. Of these, a proportion representing 40.5% of the genome were further analyzed in detail to obtain an overview of representative repetitive elements present in the A. cepa genome. Few representative satellite repeats were studied by fluorescence in situ hybridization (FISH) and southern blotting. These results provided a basis for evolutionary cytogenomics within the Allium genus.
Collapse
|
5
|
Peška V, Mandáková T, Ihradská V, Fajkus J. Comparative Dissection of Three Giant Genomes: Allium cepa, Allium sativum, and Allium ursinum. Int J Mol Sci 2019; 20:E733. [PMID: 30744119 PMCID: PMC6387171 DOI: 10.3390/ijms20030733] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 01/31/2019] [Accepted: 02/02/2019] [Indexed: 02/07/2023] Open
Abstract
Knowledge of the fascinating world of DNA repeats is continuously being enriched by newly identified elements and their hypothetical or well-established biological relevance. Genomic approaches can be used for comparative studies of major repeats in any group of genomes, regardless of their size and complexity. Such studies are particularly fruitful in large genomes, and useful mainly in crop plants where they provide a rich source of molecular markers or information on indispensable genomic components (e.g., telomeres, centromeres, or ribosomal RNA genes). Surprisingly, in Allium species, a comprehensive comparative study of repeats is lacking. Here we provide such a study of two economically important species, Allium cepa (onion), and A. sativum (garlic), and their distantly related A. ursinum (wild garlic). We present an overview and classification of major repeats in these species and have paid specific attention to sequence conservation and copy numbers of major representatives in each type of repeat, including retrotransposons, rDNA, or newly identified satellite sequences. Prevailing repeats in all three studied species belonged to Ty3/gypsy elements, however they significantly diverged and we did not detect them in common clusters in comparative analysis. Actually, only a low number of clusters was shared by all three species. Such conserved repeats were for example 5S and 45S rDNA genes and surprisingly a specific and quite rare Ty1/copia lineage. Species-specific long satellites were found mainly in A. cepa and A. sativum. We also show in situ localization of selected repeats that could potentially be applicable as chromosomal markers, e.g., in interspecific breeding.
Collapse
Affiliation(s)
- Vratislav Peška
- Institute of Biophysics, The Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic.
| | - Terezie Mandáková
- Mendel Centre for Plant Genomics and Proteomics, CEITEC, Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic.
| | - Veronika Ihradská
- Institute of Biophysics, The Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic.
- Mendel Centre for Plant Genomics and Proteomics, CEITEC, Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic.
| | - Jiří Fajkus
- Institute of Biophysics, The Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic.
- Mendel Centre for Plant Genomics and Proteomics, CEITEC, Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic.
| |
Collapse
|
6
|
Tamayo-Ordóñez YJ, Narváez-Zapata JA, Tamayo-Ordóñez MC, Sánchez-Teyer LF. Retroelements and DNA Methylation Could Contribute to Diversity of 5S rDNA in Agave L. J Mol Evol 2018; 86:404-423. [DOI: 10.1007/s00239-018-9856-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 07/03/2018] [Indexed: 01/21/2023]
|
7
|
Coates BS, Abel CA, Perera OP. Estimation of long terminal repeat element content in the Helicoverpa zea genome from high-throughput sequencing of bacterial artificial chromosome pools. Genome 2016; 60:310-324. [PMID: 28177843 DOI: 10.1139/gen-2016-0067] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The lepidopteran pest insect Helicoverpa zea feeds on cultivated corn and cotton across the Americas where control remains challenging owing to the evolution of resistance to chemical and transgenic insecticidal toxins, yet genomic resources remain scarce for this species. A bacterial artificial chromosome (BAC) library having a mean genomic insert size of 145 ± 20 kbp was created from a laboratory strain of H. zea, which provides ∼12.9-fold coverage of a 362.8 ± 8.8 Mbp (0.37 ± 0.09 pg) flow cytometry estimated haploid genome size. Assembly of Illumina HiSeq 2000 reads generated from 14 pools that encompassed all BAC clones resulted in 165 485 genomic contigs (N50 = 3262 bp; 324.6 Mbp total). Long terminal repeat (LTR) protein coding regions annotated from 181 contigs included 30 Ty1/copia, 78 Ty3/gypsy, and 73 BEL/Pao elements, of which 60 (33.1%) encoded all five functional polyprotein (pol) domains. Approximately 14% of LTR elements are distributed non-randomly across pools of BAC clones.
Collapse
Affiliation(s)
- Brad S Coates
- a USDA-ARS, Corn Insects & Crop Genetics Research Unit, Genetics Laboratory, Iowa State University, Ames, IA 50011, USA.,b Department of Entomology, Iowa State University, Ames, IA 50011, USA
| | - Craig A Abel
- a USDA-ARS, Corn Insects & Crop Genetics Research Unit, Genetics Laboratory, Iowa State University, Ames, IA 50011, USA
| | - Omaththage P Perera
- c USDA-ARS, Southern Insect Management Research Unit, 141 Experiment Station Road, P.O. Box 346, Stoneville, MS 38776, USA
| |
Collapse
|
8
|
Retrotransposon Proliferation Coincident with the Evolution of Dioecy in Asparagus. G3-GENES GENOMES GENETICS 2016; 6:2679-85. [PMID: 27342737 PMCID: PMC5015926 DOI: 10.1534/g3.116.030239] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Current phylogenetic sampling reveals that dioecy and an XY sex chromosome pair evolved once, or possibly twice, in the genus Asparagus. Although there appear to be some lineage-specific polyploidization events, the base chromosome number of 2n = 2× = 20 is relatively conserved across the Asparagus genus. Regardless, dioecious species tend to have larger genomes than hermaphroditic species. Here, we test whether this genome size expansion in dioecious species is related to a polyploidization and subsequent chromosome fusion, or to retrotransposon proliferation in dioecious species. We first estimate genome sizes, or use published values, for four hermaphrodites and four dioecious species distributed across the phylogeny, and show that dioecious species typically have larger genomes than hermaphroditic species. Utilizing a phylogenomic approach, we find no evidence for ancient polyploidization contributing to increased genome sizes of sampled dioecious species. We do find support for an ancient whole genome duplication (WGD) event predating the diversification of the Asparagus genus. Repetitive DNA content of the four hermaphroditic and four dioecious species was characterized based on randomly sampled whole genome shotgun sequencing, and common elements were annotated. Across our broad phylogenetic sampling, Ty-1 Copia retroelements, in particular, have undergone a marked proliferation in dioecious species. In the absence of a detectable WGD event, retrotransposon proliferation is the most likely explanation for the precipitous increase in genome size in dioecious Asparagus species.
Collapse
|
9
|
|
10
|
Stapley J, Santure AW, Dennis SR. Transposable elements as agents of rapid adaptation may explain the genetic paradox of invasive species. Mol Ecol 2015; 24:2241-52. [PMID: 25611725 DOI: 10.1111/mec.13089] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 01/17/2015] [Accepted: 01/19/2015] [Indexed: 12/11/2022]
Abstract
Rapid adaptation of invasive species to novel habitats has puzzled evolutionary biologists for decades, especially as this often occurs in the face of limited genetic variability. Although some ecological traits common to invasive species have been identified, little is known about the possible genomic/genetic mechanisms that may underlie their success. A common scenario in many introductions is that small founder population sizes will often lead to reduced genetic diversity, but that invading populations experience large environmental perturbations, such as changes in habitat and environmental stress. Although sudden and intense stress is usually considered in a negative context, these perturbations may actually facilitate rapid adaptation by affecting genome structure, organization and function via interactions with transposable elements (TEs), especially in populations with low genetic diversity. Stress-induced changes in TE activity can alter gene action and can promote structural variation that may facilitate the rapid adaptation observed in new environments. We focus here on the adaptive potential of TEs in relation to invasive species and highlight their role as powerful mutational forces that can rapidly create genetic diversity. We hypothesize that activity of transposable elements can explain rapid adaptation despite low genetic variation (the genetic paradox of invasive species), and provide a framework under which this hypothesis can be tested using recently developed and emerging genomic technologies.
Collapse
Affiliation(s)
- Jessica Stapley
- Department of Animal and Plant Sciences, University of Sheffield, Alfred Denny Building, Western Bank, Sheffield, S10 2TN, UK
| | | | | |
Collapse
|
11
|
Kiseleva AV, Kirov IV, Khrustaleva LI. Chromosomal organization of centromeric Ty3/gypsy retrotransposons in Allium cepa L. and Allium fistulosum L. RUSS J GENET+ 2014. [DOI: 10.1134/s102279541404005x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Hess J, Skrede I, Wolfe BE, LaButti K, Ohm RA, Grigoriev IV, Pringle A. Transposable element dynamics among asymbiotic and ectomycorrhizal Amanita fungi. Genome Biol Evol 2014; 6:1564-78. [PMID: 24923322 PMCID: PMC4122921 DOI: 10.1093/gbe/evu121] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Transposable elements (TEs) are ubiquitous inhabitants of eukaryotic genomes and their proliferation and dispersal shape genome architectures and diversity. Nevertheless, TE dynamics are often explored for one species at a time and are rarely considered in ecological contexts. Recent work with plant pathogens suggests a link between symbiosis and TE abundance. The genomes of pathogenic fungi appear to house an increased abundance of TEs, and TEs are frequently associated with the genes involved in symbiosis. To investigate whether this pattern is general, and relevant to mutualistic plant-fungal symbioses, we sequenced the genomes of related asymbiotic (AS) and ectomycorrhizal (ECM) Amanita fungi. Using methods developed to interrogate both assembled and unassembled sequences, we characterized and quantified TEs across three AS and three ECM species, including the AS outgroup Volvariella volvacea. The ECM genomes are characterized by abundant numbers of TEs, an especially prominent feature of unassembled sequencing libraries. Increased TE activity in ECM species is also supported by phylogenetic analysis of the three most abundant TE superfamilies; phylogenies revealed many radiations within contemporary ECM species. However, the AS species Amanita thiersii also houses extensive amplifications of elements, highlighting the influence of additional evolutionary parameters on TE abundance. Our analyses provide further evidence for a link between symbiotic associations among plants and fungi, and increased TE activity, while highlighting the importance individual species’ natural histories may have in shaping genome architecture.
Collapse
Affiliation(s)
- Jaqueline Hess
- Department of Organismic and Evolutionary Biology, Harvard University
| | - Inger Skrede
- Department of Organismic and Evolutionary Biology, Harvard UniversitySection for Genetics and Evolutionary Biology, University of Oslo, Norway
| | - Benjamin E Wolfe
- Department of Organismic and Evolutionary Biology, Harvard UniversityFAS Center for Systems Biology, Harvard University
| | - Kurt LaButti
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, California
| | - Robin A Ohm
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, California
| | - Igor V Grigoriev
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, California
| | - Anne Pringle
- Department of Organismic and Evolutionary Biology, Harvard University
| |
Collapse
|
13
|
Li SF, Gao WJ, Zhao XP, Dong TY, Deng CL, Lu LD. Analysis of transposable elements in the genome of Asparagus officinalis from high coverage sequence data. PLoS One 2014; 9:e97189. [PMID: 24810432 PMCID: PMC4014616 DOI: 10.1371/journal.pone.0097189] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 04/16/2014] [Indexed: 11/19/2022] Open
Abstract
Asparagus officinalis is an economically and nutritionally important vegetable crop that is widely cultivated and is used as a model dioecious species to study plant sex determination and sex chromosome evolution. To improve our understanding of its genome composition, especially with respect to transposable elements (TEs), which make up the majority of the genome, we performed Illumina HiSeq2000 sequencing of both male and female asparagus genomes followed by bioinformatics analysis. We generated 17 Gb of sequence (12×coverage) and assembled them into 163,406 scaffolds with a total cumulated length of 400 Mbp, which represent about 30% of asparagus genome. Overall, TEs masked about 53% of the A. officinalis assembly. Majority of the identified TEs belonged to LTR retrotransposons, which constitute about 28% of genomic DNA, with Ty1/copia elements being more diverse and accumulated to higher copy numbers than Ty3/gypsy. Compared with LTR retrotransposons, non-LTR retrotransposons and DNA transposons were relatively rare. In addition, comparison of the abundance of the TE groups between male and female genomes showed that the overall TE composition was highly similar, with only slight differences in the abundance of several TE groups, which is consistent with the relatively recent origin of asparagus sex chromosomes. This study greatly improves our knowledge of the repetitive sequence construction of asparagus, which facilitates the identification of TEs responsible for the early evolution of plant sex chromosomes and is helpful for further studies on this dioecious plant.
Collapse
Affiliation(s)
- Shu-Fen Li
- College of Life Sciences, Henan Normal University, Xinxiang, Henan, China
- Key Laboratory for Microorganisms and Functional Molecules, University of Henan Province, Xinxiang, China
| | - Wu-Jun Gao
- College of Life Sciences, Henan Normal University, Xinxiang, Henan, China
- Key Laboratory for Microorganisms and Functional Molecules, University of Henan Province, Xinxiang, China
- * E-mail:
| | - Xin-Peng Zhao
- College of Life Sciences, Henan Normal University, Xinxiang, Henan, China
| | - Tian-Yu Dong
- College of Life Sciences, Henan Normal University, Xinxiang, Henan, China
| | - Chuan-Liang Deng
- College of Life Sciences, Henan Normal University, Xinxiang, Henan, China
- Key Laboratory for Microorganisms and Functional Molecules, University of Henan Province, Xinxiang, China
| | - Long-Dou Lu
- College of Life Sciences, Henan Normal University, Xinxiang, Henan, China
- Key Laboratory for Microorganisms and Functional Molecules, University of Henan Province, Xinxiang, China
| |
Collapse
|
14
|
Bainard JD, Gregory TR. Genome size evolution: patterns, mechanisms, and methodological advances. Genome 2014; 56:vii-viii. [PMID: 24168634 DOI: 10.1139/gen-2013-0170] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- J D Bainard
- Department of Plant Sciences, University of Saskatchewan, Saskatoon SK, S7N 5A8, Canada
| | | |
Collapse
|
15
|
Bainard J, Gregory T. Évolution de la taille des génomes : les modèles, les mécanismes et les avancées méthodologiques. Genome 2013. [DOI: 10.1139/gen-2013-0197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- J.D. Bainard
- Department of Plant Sciences, University of Saskatchewan, Saskatoon SK, S7N 5A8, Canada
| | - T.R. Gregory
- Department of Integrative Biology, University of Guelph, Guelph ON, N1G 2W1, Canada
| |
Collapse
|