1
|
Tomaszewska P, Schwarzacher T, Heslop-Harrison JS(P. Oat chromosome and genome evolution defined by widespread terminal intergenomic translocations in polyploids. FRONTIERS IN PLANT SCIENCE 2022; 13:1026364. [PMID: 36483968 PMCID: PMC9725029 DOI: 10.3389/fpls.2022.1026364] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/14/2022] [Indexed: 06/17/2023]
Abstract
Structural chromosome rearrangements involving translocations, fusions and fissions lead to evolutionary variation between species and potentially reproductive isolation and variation in gene expression. While the wheats (Triticeae, Poaceae) and oats (Aveneae) all maintain a basic chromosome number of x=7, genomes of oats show frequent intergenomic translocations, in contrast to wheats where these translocations are relatively rare. We aimed to show genome structural diversity and genome relationships in tetraploid, hexaploid and octoploid Avena species and amphiploids, establishing patterns of intergenomic translocations across different oat taxa using fluorescence in situ hybridization (FISH) with four well-characterized repetitive DNA sequences: pAs120, AF226603, Ast-R171 and Ast-T116. In A. agadiriana (2n=4x=28), the selected probes hybridized to all chromosomes indicating that this species originated from one (autotetraploid) or closely related ancestors with the same genomes. Hexaploid amphiploids were confirmed as having the genomic composition AACCDD, while octoploid amphiploids showed three different genome compositions: AACCCCDD, AAAACCDD or AABBCCDD. The A, B, C, and D genomes of oats differ significantly in their involvement in non-centromeric, intercalary translocations. There was a predominance of distal intergenomic translocations from the C- into the D-genome chromosomes. Translocations from A- to C-, or D- to C-genome chromosomes were less frequent, proving that at least some of the translocations in oat polyploids are non-reciprocal. Rare translocations from A- to D-, D- to A- and C- to B-genome chromosomes were also visualized. The fundamental research has implications for exploiting genomic biodiversity in oat breeding through introgression from wild species potentially with contrasting chromosomal structures and hence deleterious segmental duplications or large deletions in amphiploid parental lines.
Collapse
Affiliation(s)
- Paulina Tomaszewska
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
- Department of Genetics and Cell Physiology, Faculty of Biological Sciences, University of Wrocław, Wrocław, Poland
| | - Trude Schwarzacher
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization/Guangdong Provincial, Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - J. S. (Pat) Heslop-Harrison
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization/Guangdong Provincial, Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
2
|
Toward the development of Ac/Ds transposon-mediated gene tagging system for functional genomics in oat (Avena sativa L.). Funct Integr Genomics 2022; 22:669-681. [PMID: 35467221 DOI: 10.1007/s10142-022-00861-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 11/04/2022]
Abstract
Cultivated oat (Avena sativa L.) is an important cereal grown worldwide due to its multifunctional uses for animal feed and human food. Oat has lagged behind other cereals in the genetic and genomic studies attributed to its large and complex genomes. Transposon-based genome characterization has been utilized successfully for identifying and determining gene function in large genome cereals. To develop gene tagging and gene-editing resources for oat, maize Activator (Ac) and Dissociation (Ds) transposons were introduced into the oat genome using the biolistic delivery system. A total of 2035 oat calli were bombarded and twenty-four independent, stable transgenic events were obtained. Transformation frequencies were up to 19.0%, and 1.9% for bialaphos and hygromycin selection, respectively. Re-mobilization of the non-autonomous Ds element, by introducing Ac transposase source, led to a transposition frequency up to 16.8%. The properties of ten unique flanking sequences have been characterized to reveal the Ds-tagged sites in the oat genome. Genes at Ds insertion sites showed homology to gibberellin 20-oxidase 3, (1,3;1,4)-beta-D-glucan synthase, and aspartate kinase. This Ac/Ds transposon-based gene tagging system could facilitate and expedite functional genomic studies in oat.
Collapse
|
3
|
Fominaya A, Loarce Y, González JM, Ferrer E. Cytogenetic evidence supports Avena insularis being closely related to hexaploid oats. PLoS One 2021; 16:e0257100. [PMID: 34653181 PMCID: PMC8519437 DOI: 10.1371/journal.pone.0257100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/01/2021] [Indexed: 11/19/2022] Open
Abstract
Cytogenetic observations, phylogenetic studies and genome analysis using high-density genetic markers have suggested a tetraploid Avena species carrying the C and D genomes (formerly C and A) to be the donor of all hexaploid oats (AACCDD). However, controversy surrounds which of the three extant CCDD tetraploid species—A. insularis, A. magna and A. murphyi—is most closely related to hexaploid oats. The present work describes a comparative karyotype analysis of these three CCDD tetraploid species and two hexaploid species, A. sativa and A. byzantina. This involved the use of FISH with six simple sequence repeats (SSRs) with the motifs CT, AAC, AAG, ACG, ATC and ACT, two repeated ribosomal sequences, and C genome-specific repetitive DNA. The hybridization pattern of A. insularis with oligonucleotide (AC)10 was also determined and compared with those previously published for A. sativa and A. byzantina. Significant differences in the 5S sites and SSR hybridization patterns of A. murphyi compared to the other CCDD species rule out its being directly involved in the origin of the hexaploids. In contrast, the repetitive and SSR hybridization patterns shown by the D genome chromosomes, and by most of the C genome chromosomes of A. magna and A. insularis, can be equated with the corresponding chromosomes of the hexaploids. Several chromosome hybridization signals seen for A. insularis, but not for A. magna, were shared with the hexaploid oats species, especially with A. byzantina. These diagnostic signals add weight to the idea that the extant A. insularis, or a direct ancestor of it, is the most closely related progenitor of hexaploid oats. The similarity of the chromosome hybridization patterns of the hexaploids and CCDD tetraploids was taken as being indicative of homology. A common chromosome nomenclature for CCDD species based on that of the hexaploid species is proposed.
Collapse
Affiliation(s)
- Araceli Fominaya
- Department of Biomedicine and Biotechnology, University of Alcalá, Alcalá de Henares, Madrid, Spain
| | - Yolanda Loarce
- Department of Biomedicine and Biotechnology, University of Alcalá, Alcalá de Henares, Madrid, Spain
| | - Juan M. González
- Department of Biomedicine and Biotechnology, University of Alcalá, Alcalá de Henares, Madrid, Spain
| | - Esther Ferrer
- Department of Biomedicine and Biotechnology, University of Alcalá, Alcalá de Henares, Madrid, Spain
- * E-mail:
| |
Collapse
|
4
|
Yan H, Ren Z, Deng D, Yang K, Yang C, Zhou P, Wight CP, Ren C, Peng Y. New evidence confirming the CD genomic constitutions of the tetraploid Avena species in the section Pachycarpa Baum. PLoS One 2021; 16:e0240703. [PMID: 33417607 PMCID: PMC7793304 DOI: 10.1371/journal.pone.0240703] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/21/2020] [Indexed: 11/28/2022] Open
Abstract
The tetraploid Avena species in the section Pachycarpa Baum, including A. insularis, A. maroccana, and A. murphyi, are thought to be involved in the evolution of hexaploid oats; however, their genome designations are still being debated. Repetitive DNA sequences play an important role in genome structuring and evolution, so understanding the chromosomal organization and distribution of these sequences in Avena species could provide valuable information concerning genome evolution in this genus. In this study, the chromosomal organizations and distributions of six repetitive DNA sequences (including three SSR motifs (TTC, AAC, CAG), one 5S rRNA gene fragment, and two oat A and C genome specific repeats) were investigated using non-denaturing fluorescence in situ hybridization (ND-FISH) in the three tetraploid species mentioned above and in two hexaploid oat species. Preferential distribution of the SSRs in centromeric regions was seen in the A and D genomes, whereas few signals were detected in the C genomes. Some intergenomic translocations were observed in the tetraploids; such translocations were also detected between the C and D genomes in the hexaploids. These results provide robust evidence for the presence of the D genome in all three tetraploids, strongly suggesting that the genomic constitution of these species is DC and not AC, as had been thought previously.
Collapse
Affiliation(s)
- Honghai Yan
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Zichao Ren
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Di Deng
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Kehan Yang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Chuang Yang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Pingping Zhou
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Charlene P. Wight
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, ON, Canada
| | - Changzhong Ren
- Baicheng Academy of Agricultural Sciences, Baicheng, China
| | - Yuanying Peng
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
5
|
Fu YB, Li P, Biligetu B. Developing Chloroplast Genomic Resources from 25 Avena Species for the Characterization of Oat Wild Relative Germplasm. PLANTS (BASEL, SWITZERLAND) 2019; 8:E438. [PMID: 31652703 PMCID: PMC6918232 DOI: 10.3390/plants8110438] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/13/2019] [Accepted: 10/21/2019] [Indexed: 02/03/2023]
Abstract
Chloroplast (cp) genomics will play an important role in the characterization of crop wild relative germplasm conserved in worldwide gene banks, thanks to the advances in genome sequencing. We applied a multiplexed shotgun sequencing procedure to sequence the cp genomes of 25 Avena species with variable ploidy levels. Bioinformatics analysis of the acquired sequences generated 25 de novo genome assemblies ranging from 135,557 to 136,006 bp. The gene annotations revealed 130 genes and their duplications, along with four to six pseudogenes, for each genome. Little differences in genome structure and gene arrangement were observed across the 25 species. Polymorphism analyses identified 1313 polymorphic sites and revealed an average of 277 microsatellites per genome. Greater nucleotide diversity was observed in the short single-copy region. Genome-wide scanning of selection signals suggested that six cp genes were under positive selection on some amino acids. These research outputs allow for a better understanding of oat cp genomes and evolution, and they form an essential set of cp genomic resources for the studies of oat evolutionary biology and for oat wild relative germplasm characterization.
Collapse
Affiliation(s)
- Yong-Bi Fu
- Plant Gene Resources of Canada, Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK S7N 0X2, Canada.
| | - Pingchuan Li
- Department of Plant Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada.
| | - Bill Biligetu
- Department of Plant Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada.
| |
Collapse
|
6
|
Comparative linkage mapping of diploid, tetraploid, and hexaploid Avena species suggests extensive chromosome rearrangement in ancestral diploids. Sci Rep 2019; 9:12298. [PMID: 31444367 DOI: 10.1038/s41598-019-48639-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 07/10/2019] [Indexed: 12/30/2022] Open
Abstract
The genus Avena (oats) contains diploid, tetraploid and hexaploid species that evolved through hybridization and polyploidization. Four genome types (named A through D) are generally recognized. We used GBS markers to construct linkage maps of A genome diploid (Avena strigosa x A. wiestii, 2n = 14), and AB genome tetraploid (A. barbata 2n = 28) oats. These maps greatly improve coverage from older marker systems. Seven linkage groups in the tetraploid showed much stronger homology and synteny with the A genome diploids than did the other seven, implying an allopolyploid hybrid origin of A. barbata from distinct A and B genome diploid ancestors. Inferred homeologies within A. barbata revealed that the A and B genomes are differentiated by several translocations between chromosomes within each subgenome. However, no translocation exchanges were observed between A and B genomes. Comparison to a consensus map of ACD hexaploid A. sativa (2n = 42) revealed that the A and D genomes of A. sativa show parallel rearrangements when compared to the A genomes of the diploids and tetraploids. While intergenomic translocations are well known in polyploid Avena, our results are most parsimoniously explained if translocations also occurred in the A, B and D genome diploid ancestors of polyploid Avena.
Collapse
|
7
|
Peng Y, Zhou P, Zhao J, Li J, Lai S, Tinker NA, Liao S, Yan H. Phylogenetic relationships in the genus Avena based on the nuclear Pgk1 gene. PLoS One 2018; 13:e0200047. [PMID: 30408035 PMCID: PMC6224039 DOI: 10.1371/journal.pone.0200047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 10/29/2018] [Indexed: 11/18/2022] Open
Abstract
The phylogenetic relationships among 76 Avena taxa, representing 14 diploids, eight tetraploids, and four hexaploids were investigated by using the nuclear plastid 3-phosphoglycerate kinase gene (Pgk1). A significant deletion (131 bp) was detected in all the C genome homoeologues which reconfirmed a major structural divergence between the A and C genomes. Phylogenetic analysis indicated the Cp genome is more closely related to the polyploid species than is the Cv genome. Two haplotypes of Pgk1 gene were obtained from most of the AB genome tetraploids. Both types of the barbata group showed a close relationship with the As genome diploid species, supporting the hypothesis that both the A and B genomes are derived from an As genome. Two haplotypes were also detected in A. agadiriana, which showed close relationships with the As genome diploid and the Ac genome diploid, respectively, emphasizing the important role of the Ac genome in the evolution of A. agadiriana. Three homoeologues of the Pgk1 gene were detected in five hexaploid accessions. The homoeologues that might represent the D genome were tightly clustered with the tetraploids A. maroccana and A. murphyi, but did not show a close relationship with any extant diploid species.
Collapse
Affiliation(s)
- Yuanying Peng
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, People’s Republic of China
| | - Pingping Zhou
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, People’s Republic of China
- Collaborative Innovation Center of Tissue Repair Material of Sichuan Province, China West Normal University, Nanchong, People’s Republic of China
| | - Jun Zhao
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, People’s Republic of China
| | - Junzhuo Li
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, People’s Republic of China
| | - Shikui Lai
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, People’s Republic of China
| | - Nicholas A. Tinker
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, Canada
| | - Shu Liao
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, People’s Republic of China
| | - Honghai Yan
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, People’s Republic of China
- Collaborative Innovation Center of Tissue Repair Material of Sichuan Province, China West Normal University, Nanchong, People’s Republic of China
- * E-mail:
| |
Collapse
|
8
|
Abstract
Cultivated hexaploid oat has three different sets of nuclear genomes (A, C, D), but its evolutionary history remains elusive. A multiplexed shotgun sequencing procedure was explored to acquire maternal phylogenetic signals from chloroplast and mitochondria genomes of 25 Avena species. Phylogenetic analyses of the acquired organelle SNP data revealed a new maternal pathway towards hexaploids of oat genome evolution involving three diploid species (A. ventricosa, A. canariensis and A. longiglumis) and two tetraploid species (A. insularis and A. agadiriana). Cultivated hexaploid A. sativa acquired its maternal genome from an AC genome tetraploid close to A. insularis. Both AC genome A. insularis and AB genome A. agadiriana obtained a maternal genome from an ancient A, not C, genome diploid close to A. longiglumis. Divergence dating showed the major divergences of C genome species 19.9–21.2 million years ago (Mya), of the oldest A genome A. canariensis 13–15 Mya, and of the clade with hexaploids 8.5–9.5 Mya. These findings not only advance our knowledge on oat genome evolution, but also have implications for oat germplasm conservation and utilization in breeding.
Collapse
Affiliation(s)
- Yong-Bi Fu
- Plant Gene Resources of Canada, Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK S7N, 0X2, Canada.
| |
Collapse
|
9
|
Luo X, Tinker NA, Zhou Y, Wight CP, Liu J, Wan W, Chen L, Peng Y. Genomic relationships among sixteen species of Avena based on (ACT)6 trinucleotide repeat FISH. Genome 2018; 61:63-70. [DOI: 10.1139/gen-2017-0132] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Knowledge of the locations of repeat elements could be very important in the assembly of genome sequences and their assignment to physical chromosomes. Genomic and species relationships among 16 species were investigated using fluorescence in situ hybridization (FISH) with the Am1 and (ACT)6 probes. The Am1 oligonucleotide probe was particularly enriched in the C genomes, whereas the (ACT)6 trinucleotide repeat probe showed a diverse distribution of hybridization patterns in the A, AB, C, AC, and ACD genomes but might not be present in the B and D genomes. The hybridization pattern of Avena sativa was very similar to that of A. insularis, indicating that this species most likely originated from A. insularis as a tetraploid ancestor. Although the two FISH probes failed to identify relationships of more species, this proof-of-concept approach opens the way to the use of FISH probes in assigning other signature elements from genomic sequence to physical chromosomes.
Collapse
Affiliation(s)
- Xiaomei Luo
- College of Forestry, Sichuan Agricultural University, Huimin Road 211, Wenjiang District 611130, Chengdu City, Sichuan Province, China
| | - Nick A. Tinker
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, KW Neatby Bldg., Central Experimental Farm, 960 Carling Avenue, Ottawa, ON K1A 0C6, Canada
| | - Yonghong Zhou
- Triticeae Research Institute, Sichuan Agricultural University, Huimin Road 211, Wenjiang District 611130, Chengdu City, Sichuan Province, China
| | - Charlene P. Wight
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, KW Neatby Bldg., Central Experimental Farm, 960 Carling Avenue, Ottawa, ON K1A 0C6, Canada
| | - Juncheng Liu
- College of Forestry, Sichuan Agricultural University, Huimin Road 211, Wenjiang District 611130, Chengdu City, Sichuan Province, China
| | - Wenlin Wan
- College of Forestry, Sichuan Agricultural University, Huimin Road 211, Wenjiang District 611130, Chengdu City, Sichuan Province, China
| | - Liang Chen
- College of Forestry, Sichuan Agricultural University, Huimin Road 211, Wenjiang District 611130, Chengdu City, Sichuan Province, China
| | - Yuanying Peng
- Triticeae Research Institute, Sichuan Agricultural University, Huimin Road 211, Wenjiang District 611130, Chengdu City, Sichuan Province, China
| |
Collapse
|
10
|
Saarela JM, Bull RD, Paradis MJ, Ebata SN, Paul M. Peterson, Soreng RJ, Paszko B. Molecular phylogenetics of cool-season grasses in the subtribes Agrostidinae, Anthoxanthinae, Aveninae, Brizinae, Calothecinae, Koeleriinae and Phalaridinae (Poaceae, Pooideae, Poeae, Poeae chloroplast group 1). PHYTOKEYS 2017; 87:1-139. [PMID: 29114171 PMCID: PMC5672130 DOI: 10.3897/phytokeys.87.12774] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 08/04/2017] [Indexed: 08/22/2023]
Abstract
Circumscriptions of and relationships among many genera and suprageneric taxa of the diverse grass tribe Poeae remain controversial. In an attempt to clarify these, we conducted phylogenetic analyses of >2400 new DNA sequences from two nuclear ribosomal regions (ITS, including internal transcribed spacers 1 and 2 and the 5.8S gene, and the 3'-end of the external transcribed spacer (ETS)) and five plastid regions (matK, trnL-trnF, atpF-atpH, psbK-psbI, psbA-rps19-trnH), and of more than 1000 new and previously published ITS sequences, focused particularly on Poeae chloroplast group 1 and including broad and increased species sampling compared to previous studies. Deep branches in the combined plastid and combined ITS+ETS trees are generally well resolved, the trees are congruent in most aspects, branch support across the trees is stronger than in trees based on only ITS and fewer plastid regions, and there is evidence of conflict between data partitions in some taxa. In plastid trees, a strongly supported clade corresponds to Poeae chloroplast group 1 and includes Agrostidinae p.p., Anthoxanthinae, Aveninae s.str., Brizinae, Koeleriinae (sometimes included in Aveninae s.l.), Phalaridinae and Torreyochloinae. In the ITS+ETS tree, a supported clade includes these same tribes as well as Sesleriinae and Scolochloinae. Aveninae s.str. and Sesleriinae are sister taxa and form a clade with Koeleriinae in the ITS+ETS tree whereas Aveninae s.str. and Koeleriinae form a clade and Sesleriinae is part of Poeae chloroplast group 2 in the plastid tree. All species of Trisetum are part of Koeleriinae, but the genus is polyphyletic. Koeleriinae is divided into two major subclades: one comprises Avellinia, Gaudinia, Koeleria, Rostraria, Trisetaria and Trisetum subg. Trisetum, and the other Calamagrostis/Deyeuxia p.p. (multiple species from Mexico to South America), Peyritschia, Leptophyllochloa, Sphenopholis, Trisetopsis and Trisetum subg. Deschampsioidea. Graphephorum, Trisetum cernuum, T. irazuense and T. macbridei fall in different clades of Koeleriinae in plastid vs. nuclear ribosomal trees, and are likely of hybrid origin. ITS and matK trees identify a third lineage of Koeleriinae corresponding to Trisetum subsect. Sibirica, and affinities of Lagurus ovatus with respect to Aveninae s.str. and Koeleriinae are incongruent in nuclear ribosomal and plastid trees, supporting recognition of Lagurus in its own subtribe. A large clade comprises taxa of Agrostidinae, Brizinae and Calothecinae, but neither Agrostidinae nor Calothecinae are monophyletic as currently circumscribed and affinities of Brizinae differ in plastid and nuclear ribosomal trees. Within this clade, one newly identified lineage comprises Calamagrostis coarctata, Dichelachne, Echinopogon (Agrostidinae p.p.) and Relchela (Calothecinae p.p.), and another comprises Chascolytrum (Calothecinae p.p.) and Deyeuxia effusa (Agrostidinae p.p.). Within Agrostidinae p.p., the type species of Deyeuxia and Calamagrostis s.str. are closely related, supporting classification of Deyeuxia as a synonym of Calamagrostis s.str. Furthermore, the two species of Ammophila are not sister taxa and are nested among different groups of Calamagrostis s.str., supporting their classification in Calamagrostis. Agrostis, Lachnagrostis and Polypogon form a clade and species of each are variously intermixed in plastid and nuclear ribosomal trees. Additionally, all but one species from South America classified in Deyeuxia sect. Stylagrostis resolve in Holcinae p.p. (Deschampsia). The current phylogenetic results support recognition of the latter species in Deschampsia, and we also demonstrate Scribneria is part of this clade. Moreover, Holcinae is not monophyletic in its current circumscription because Deschampsia does not form a clade with Holcus and Vahlodea, which are sister taxa. The results support recognition of Deschampsia in its own subtribe Aristaveninae. Substantial further changes to the classification of these grasses will be needed to produce generic circumscriptions consistent with phylogenetic evidence. The following 15 new combinations are made: Calamagrostis × calammophila, C. breviligulata, C. breviligulata subsp. champlainensis, C. × don-hensonii, Deschampsia aurea, D. bolanderi, D. chrysantha, D. chrysantha var. phalaroides, D. eminens, D. eminens var. fulva, D. eminens var. inclusa, D. hackelii, D. ovata, and D. ovata var. nivalis. D. podophora; the new name Deschampsia parodiana is proposed; the new subtribe Lagurinae is described; and a second-step lectotype is designated for the name Deyeuxia phalaroides.
Collapse
Affiliation(s)
- Jeffery M. Saarela
- Botany Section, Research and Collections, Canadian Museum of Nature, Ottawa, Ontario, Canada
| | - Roger D. Bull
- Botany Section, Research and Collections, Canadian Museum of Nature, Ottawa, Ontario, Canada
| | - Michel J. Paradis
- Botany Section, Research and Collections, Canadian Museum of Nature, Ottawa, Ontario, Canada
| | - Sharon N. Ebata
- Botany Section, Research and Collections, Canadian Museum of Nature, Ottawa, Ontario, Canada
| | - Paul M. Peterson
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC, United States of America
| | - Robert J. Soreng
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC, United States of America
| | - Beata Paszko
- Department of Vascular Plant Systematics and Phytogeography, W. Szafer Institute of Botany, Polish Academy of Sciences, Kraków, Poland
| |
Collapse
|
11
|
Yan H, Bekele WA, Wight CP, Peng Y, Langdon T, Latta RG, Fu YB, Diederichsen A, Howarth CJ, Jellen EN, Boyle B, Wei Y, Tinker NA. High-density marker profiling confirms ancestral genomes of Avena species and identifies D-genome chromosomes of hexaploid oat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2016; 129:2133-2149. [PMID: 27522358 PMCID: PMC5069325 DOI: 10.1007/s00122-016-2762-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 08/02/2016] [Indexed: 05/07/2023]
Abstract
KEY MESSAGE Genome analysis of 27 oat species identifies ancestral groups, delineates the D genome, and identifies ancestral origin of 21 mapped chromosomes in hexaploid oat. We investigated genomic relationships among 27 species of the genus Avena using high-density genetic markers revealed by genotyping-by-sequencing (GBS). Two methods of GBS analysis were used: one based on tag-level haplotypes that were previously mapped in cultivated hexaploid oat (A. sativa), and one intended to sample and enumerate tag-level haplotypes originating from all species under investigation. Qualitatively, both methods gave similar predictions regarding the clustering of species and shared ancestral genomes. Furthermore, results were consistent with previous phylogenies of the genus obtained with conventional approaches, supporting the robustness of whole genome GBS analysis. Evidence is presented to justify the final and definitive classification of the tetraploids A. insularis, A. maroccana (=A. magna), and A. murphyi as containing D-plus-C genomes, and not A-plus-C genomes, as is most often specified in past literature. Through electronic painting of the 21 chromosome representations in the hexaploid oat consensus map, we show how the relative frequency of matches between mapped hexaploid-derived haplotypes and AC (DC)-genome tetraploids vs. A- and C-genome diploids can accurately reveal the genome origin of all hexaploid chromosomes, including the approximate positions of inter-genome translocations. Evidence is provided that supports the continued classification of a diverged B genome in AB tetraploids, and it is confirmed that no extant A-genome diploids, including A. canariensis, are similar enough to the D genome of tetraploid and hexaploid oat to warrant consideration as a D-genome diploid.
Collapse
Affiliation(s)
- Honghai Yan
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Ave., Ottawa, ON, K1A 0C6, Canada
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wubishet A Bekele
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Ave., Ottawa, ON, K1A 0C6, Canada
| | - Charlene P Wight
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Ave., Ottawa, ON, K1A 0C6, Canada
| | - Yuanying Peng
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Tim Langdon
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Gogerddan, Aberystwyth, Ceredigion, SY23 3EE, UK
| | - Robert G Latta
- Department of Biology, Dalhousie University, 1355 Oxford St., Halifax, NS, B3H 4R2, Canada
| | - Yong-Bi Fu
- Plant Gene Resources of Canada, Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada
| | - Axel Diederichsen
- Plant Gene Resources of Canada, Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada
| | - Catherine J Howarth
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Gogerddan, Aberystwyth, Ceredigion, SY23 3EE, UK
| | - Eric N Jellen
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT, USA
| | - Brian Boyle
- Plateforme d'analyses génomiques, Institut de biologie intégrative et des systèmes, Université Laval, Quebec City, QC, G1V 0A6, Canada
| | - Yuming Wei
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Nicholas A Tinker
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Ave., Ottawa, ON, K1A 0C6, Canada.
| |
Collapse
|
12
|
Yan H, Martin SL, Bekele WA, Latta RG, Diederichsen A, Peng Y, Tinker NA. Genome size variation in the genus Avena. Genome 2016; 59:209-20. [PMID: 26881940 DOI: 10.1139/gen-2015-0132] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Genome size is an indicator of evolutionary distance and a metric for genome characterization. Here, we report accurate estimates of genome size in 99 accessions from 26 species of Avena. We demonstrate that the average genome size of C genome diploid species (2C = 10.26 pg) is 15% larger than that of A genome species (2C = 8.95 pg), and that this difference likely accounts for a progression of size among tetraploid species, where AB < AC < CC (average 2C = 16.76, 18.60, and 21.78 pg, respectively). All accessions from three hexaploid species with the ACD genome configuration had similar genome sizes (average 2C = 25.74 pg). Genome size was mostly consistent within species and in general agreement with current information about evolutionary distance among species. Results also suggest that most of the polyploid species in Avena have experienced genome downsizing in relation to their diploid progenitors. Genome size measurements could provide additional quality control for species identification in germplasm collections, especially in cases where diploid and polyploid species have similar morphology.
Collapse
Affiliation(s)
- Honghai Yan
- a Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, 960 Carling Ave., Bldg. 20, C.E.F., Ottawa, ON K1A 0C6, Canada.,b Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, Sichuan, People's Republic of China
| | - Sara L Martin
- a Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, 960 Carling Ave., Bldg. 20, C.E.F., Ottawa, ON K1A 0C6, Canada
| | - Wubishet A Bekele
- a Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, 960 Carling Ave., Bldg. 20, C.E.F., Ottawa, ON K1A 0C6, Canada
| | - Robert G Latta
- c Department of Biology, Dalhousie University, 1355 Oxford St., Halifax, NS B3H 4R2, Canada
| | - Axel Diederichsen
- d Agriculture and Agri-Food Canada, Plant Gene Resources of Canada, 107 Science Place, Saskatoon, SK S7N 0X2, Canada
| | - Yuanying Peng
- b Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu 611130, Sichuan, People's Republic of China
| | - Nicholas A Tinker
- a Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, 960 Carling Ave., Bldg. 20, C.E.F., Ottawa, ON K1A 0C6, Canada
| |
Collapse
|