1
|
Li C, Zhao W, Zhou H, Wu J, Huo Y, Jiang D, Ji X, Liu K, Xu Q, Li W. Functional Mutations in the microRNA-155 Promoter Modulate its Transcription Efficiency and Expression. Mol Biotechnol 2024; 66:2262-2272. [PMID: 37624482 DOI: 10.1007/s12033-023-00857-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/07/2023] [Indexed: 08/26/2023]
Abstract
Limited research has been conducted on porcine miR-155 promoters, and previous study from our group have identified two haplotypes (TT and CC) in different pig breeds, each associated with five fully linked mutation sites within or near the miR-155 gene (Li et al. Dev Comp Immunol 39(1):110-116, 2013). In this study, the promoter region of porcine miR-155 was screened, and two important transcription factors, Foxp3 and RelA, were identified. The binding ability of Foxp3 protein was found to be affected by the first mutation site (A/C) using EMSA analysis. In vitro experiments revealed that the expression level of miR-155 was significantly higher in the C haplotype compared to the T haplotype. Additionally, northern blotting assays indicated that both the first mutation site (A/C) and the fourth mutation site (G/T) had a significant impact on miR-155 expression levels. These findings provide further insights into the transcriptional regulation of porcine miR-155 and identify crucial mutation sites that influence miR-155 expression. This knowledge can serve as a basis for identifying potential molecular markers associated with disease resistance in swine.
Collapse
Affiliation(s)
- Congcong Li
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, No. 6 Longzi North Road, Zhengdong New District, Zhengzhou, 450046, Henan, China.
| | - Wanxia Zhao
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, No. 6 Longzi North Road, Zhengdong New District, Zhengzhou, 450046, Henan, China
| | - Huijie Zhou
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, No. 6 Longzi North Road, Zhengdong New District, Zhengzhou, 450046, Henan, China
| | - Jiao Wu
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, No. 6 Longzi North Road, Zhengdong New District, Zhengzhou, 450046, Henan, China
| | - Yong Huo
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, No. 6 Longzi North Road, Zhengdong New District, Zhengzhou, 450046, Henan, China
| | - Dongfeng Jiang
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, No. 6 Longzi North Road, Zhengdong New District, Zhengzhou, 450046, Henan, China
| | - Xiangbo Ji
- Henan Key Laboratory of Unconventional Feed Resources Innovative Utilization, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
| | - Kun Liu
- Henan Key Laboratory of Unconventional Feed Resources Innovative Utilization, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
| | - Qiuliang Xu
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, No. 6 Longzi North Road, Zhengdong New District, Zhengzhou, 450046, Henan, China
| | - Wantao Li
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, No. 6 Longzi North Road, Zhengdong New District, Zhengzhou, 450046, Henan, China
| |
Collapse
|
2
|
Hao D, Wang X, Yang Y, Chen H, Thomsen B, Holm LE. MicroRNA sequence variation can impact interactions with target mRNA in cattle. Gene 2023; 868:147373. [PMID: 36934784 DOI: 10.1016/j.gene.2023.147373] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 03/19/2023]
Abstract
BACKGROUND Small non-coding microRNAs (miRNAs) are important modulators at post-transcriptional levels. Single-nucleotide polymorphisms (SNPs) located in miRNA genes can alter the secondary structure of pre-miRNA to either impair or promote the miRNA maturation processes. Furthermore, SNPs located in the miRNA seed regions can stabilize or disturb miRNA-target interactions, thereby, quantitatively influence the expression of target genes. Therefore, the main objective of this study was to detect SNPs in bovine miRNAs using the whole-genome re-sequencing datasets of 1632 cattle of five breeds from the 1000 bull genomes project. RESULTS In total, our study identified 1109, 334, and 130 SNPs in the miRNA precursor, mature, and seed regions, respectively. The heterozygosity values were generally less than 0.3, and the minor allele frequencies (MAFs) were mainly less than 0.1. Most SNPs were in Hardy-Weinberg equilibrium (HWE) (HWE-P > 0.05). Furthermore, we found that the majority of SNPs (MAF > 0.1 and HWE-P > 0.05) in the miRNA seed regions altered the repertoire of target genes, which in turn were enriched in different KEGG pathways or GO terms. Thus target prediction for bta-miR-2888 revealed loss of 309 target genes and gain of 691 target genes. The 691 gained target genes were significantly enriched in 60 KEGG pathways and 21 GO terms. CONCLUSION In summary, our study identified candidate SNPs in miRNA precursor, mature, and seed regions that are likely to affect target RNA interactions, thereby potentially influencing cattle phenotypic traits.
Collapse
Affiliation(s)
- Dan Hao
- Department of Molecular Biology and Genetics, Aarhus University, 8000, Aarhus C, Denmark; College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, 712100, Yangling, Shaanxi, China
| | - Xiao Wang
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, 250100, Jinan, China; Konge Larsen ApS, 2800, Kongens Lyngby, Denmark
| | - Yu Yang
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, 712100, Yangling, Shaanxi, China
| | - Hong Chen
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, 712100, Yangling, Shaanxi, China.
| | - Bo Thomsen
- Department of Molecular Biology and Genetics, Aarhus University, 8000, Aarhus C, Denmark.
| | - Lars-Erik Holm
- Department of Molecular Biology and Genetics, Aarhus University, 8000, Aarhus C, Denmark
| |
Collapse
|
3
|
Jaganathan D, Rajakani R, Doddamani D, Saravanan D, Pulipati S, Hari Sundar G V, Sellamuthu G, Jayabalan S, Kumari K, Parthasarathy P, S P, Ramalingam S, Shivaprasad PV, Venkataraman G. A conserved SNP variation in the pre-miR396c flanking region in Oryza sativa indica landraces correlates with mature miRNA abundance. Sci Rep 2023; 13:2195. [PMID: 36750679 PMCID: PMC9905475 DOI: 10.1038/s41598-023-28836-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 01/25/2023] [Indexed: 02/09/2023] Open
Abstract
Plant precursor miRNAs (pre-miRNA) have conserved evolutionary footprints that correlate with mode of miRNA biogenesis. In plants, base to loop and loop to base modes of biogenesis have been reported. Conserved structural element(s) in pre-miRNA play a major role in turn over and abundance of mature miRNA. Pre-miR396c sequences and secondary structural characteristics across Oryza species are presented. Based on secondary structure, twelve Oryza pre-miR396c sequences are divided into three groups, with the precursor from halophytic Oryza coarctata forming a distinct group. The miRNA-miRNA* duplex region is completely conserved across eleven Oryza species as are other structural elements in the pre-miRNA, suggestive of an evolutionarily conserved base-to-loop mode of miRNA biogenesis. SNPs within O. coarctata mature miR396c sequence and miRNA* region have the potential to alter target specificity and association with the RNA-induced silencing complex. A conserved SNP variation, rs10234287911 (G/A), identified in O. sativa pre-miR396c sequences alters base pairing above the miRNA-miRNA* duplex. The more stable structure conferred by the 'A10234287911' allele may promote better processing vis-à-vis the structure conferred by 'G10234287911' allele. We also examine pri- and pre-miR396c expression in cultivated rice under heat and salinity and their correlation with miR396c expression.
Collapse
Affiliation(s)
- Deepa Jaganathan
- Plant Molecular Biology Laboratory, Department of Biotechnology, M. S. Swaminathan Research Foundation (MSSRF), Chennai, Tamil Nadu, 600113, India.,Tamil Nadu Agricultural University (TNAU), Coimbatore, Tamil Nadu, 641003, India
| | - Raja Rajakani
- Plant Molecular Biology Laboratory, Department of Biotechnology, M. S. Swaminathan Research Foundation (MSSRF), Chennai, Tamil Nadu, 600113, India
| | | | - Divya Saravanan
- Tamil Nadu Agricultural University (TNAU), Coimbatore, Tamil Nadu, 641003, India
| | - Shalini Pulipati
- Plant Molecular Biology Laboratory, Department of Biotechnology, M. S. Swaminathan Research Foundation (MSSRF), Chennai, Tamil Nadu, 600113, India
| | - Vivek Hari Sundar G
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, 560065, India
| | - Gothandapani Sellamuthu
- Plant Molecular Biology Laboratory, Department of Biotechnology, M. S. Swaminathan Research Foundation (MSSRF), Chennai, Tamil Nadu, 600113, India.,Excellent Team for Mitigation (ETM), Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czechia
| | - Shilpha Jayabalan
- Plant Molecular Biology Laboratory, Department of Biotechnology, M. S. Swaminathan Research Foundation (MSSRF), Chennai, Tamil Nadu, 600113, India
| | - Kumkum Kumari
- Plant Molecular Biology Laboratory, Department of Biotechnology, M. S. Swaminathan Research Foundation (MSSRF), Chennai, Tamil Nadu, 600113, India
| | - Pavithra Parthasarathy
- Plant Molecular Biology Laboratory, Department of Biotechnology, M. S. Swaminathan Research Foundation (MSSRF), Chennai, Tamil Nadu, 600113, India
| | - Punitha S
- GIS and Remote Sensing Laboratory, M. S. Swaminathan Research Foundation (MSSRF), Chennai, Tamil Nadu, 600113, India
| | | | - Padubidri V Shivaprasad
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, 560065, India
| | - Gayatri Venkataraman
- Plant Molecular Biology Laboratory, Department of Biotechnology, M. S. Swaminathan Research Foundation (MSSRF), Chennai, Tamil Nadu, 600113, India.
| |
Collapse
|
4
|
Pawlina-Tyszko K, Semik-Gurgul E, Gurgul A, Oczkowicz M, Szmatoła T, Bugno-Poniewierska M. Application of the targeted sequencing approach reveals the single nucleotide polymorphism (SNP) repertoire in microRNA genes in the pig genome. Sci Rep 2021; 11:9848. [PMID: 33972633 PMCID: PMC8110958 DOI: 10.1038/s41598-021-89363-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 04/21/2021] [Indexed: 12/26/2022] Open
Abstract
MicroRNAs (miRNAs) are recognized as gene expression regulators, indirectly orchestrating a plethora of biological processes. Single nucleotide polymorphism (SNP), one of the most common genetic variations in the genome, is established to affect miRNA functioning and influence complex traits and diseases. SNPs in miRNAs have also been associated with important production traits in livestock. Thus, the aim of our study was to reveal the SNP variability of miRNA genes in the genome of the pig, which is a significant farm animal and large-mammal human model. To this end, we applied the targeted sequencing approach, enabling deep sequencing of specified genomic regions. As a result, 73 SNPs localized in 50 distinct pre-miRNAs were identified. In silico analysis revealed that many of the identified SNPs influenced the structure and energy of the hairpin precursors. Moreover, SNPs localized in the seed regions were shown to alter targeted genes and, as a result, enrich different biological pathways. The obtained results corroborate a significant impact of SNPs on the miRNA processing and broaden the state of knowledge in the field of animal genomics. We also report the targeted sequencing approach to be a promising alternative for the whole genome sequencing in miRNA genes focused studies.
Collapse
Affiliation(s)
- Klaudia Pawlina-Tyszko
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Krakowska 1, Balice, 32-083, Kraków, Poland.
| | - Ewelina Semik-Gurgul
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Krakowska 1, Balice, 32-083, Kraków, Poland
| | - Artur Gurgul
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Krakowska 1, Balice, 32-083, Kraków, Poland
- Center for Experimental and Innovative Medicine, The University of Agriculture in Kraków, Rędzina 1c, 30-248, Kraków, Poland
| | - Maria Oczkowicz
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Krakowska 1, Balice, 32-083, Kraków, Poland
| | - Tomasz Szmatoła
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Krakowska 1, Balice, 32-083, Kraków, Poland
- Center for Experimental and Innovative Medicine, The University of Agriculture in Kraków, Rędzina 1c, 30-248, Kraków, Poland
| | - Monika Bugno-Poniewierska
- Department of Animal Reproduction, Anatomy and Genomics, The University of Agriculture in Kraków, al. Mickiewicza 24/28, 30-059, Kraków, Poland
| |
Collapse
|
5
|
Hicks JA, Liu HC. Centennial Review: Metabolic microRNA - shifting gears in the regulation of metabolic pathways in poultry. Poult Sci 2021; 100:100856. [PMID: 33652542 PMCID: PMC7936154 DOI: 10.1016/j.psj.2020.11.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 11/16/2020] [Accepted: 11/22/2020] [Indexed: 01/01/2023] Open
Abstract
Over 20 yr ago, a small noncoding class of RNA termed microRNA (miRNA) that was able to recognize sequences in mRNAs and inhibit their translation was discovered in Caenorhabditis elegans. In the intervening years, miRNA have been discovered in most eukaryotes and are now known to regulate the majority of protein-coding genes. It has been discovered that disruption of miRNA function often leads to the development of pathological conditions. One physiological system under extensive miRNA-mediated regulation is metabolism. Metabolism is one of the most dynamic of biological networks within multiple organs, including the liver, muscle, and adipose tissue, working in concert to respond to ever-changing nutritional cues and energy demands. Therefore, it is not surprising that miRNA regulate virtually all aspects of eukaryotic metabolism and have been linked to metabolic disorders, such as obesity, fatty liver diseases, and diabetes, just to name a few. Chickens, and birds in general, face their own unique metabolic challenges, particularly after hatching, when their metabolism must completely transform from using lipid-rich yolk to carbohydrate-rich feed as fuel in a very short period of time. Furthermore, commercial poultry breeds have undergone extensive selection over the last century for more desirable production traits, which has resulted in numerous metabolic consequences. Here, we review the current knowledge of miRNA-mediated regulation of metabolic development and function in chickens.
Collapse
Affiliation(s)
- Julie A Hicks
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Hsiao-Ching Liu
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
6
|
Li J, Hou L, Sun Y, Xing J, Jiang Y, Kang L. Single nucleotide polymorphism rs737028527 (G>A) affect miR-1b-3p biogenesis and effects on chicken egg-laying traits. Anim Reprod Sci 2020; 218:106476. [PMID: 32507256 DOI: 10.1016/j.anireprosci.2020.106476] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 12/15/2022]
Abstract
The abundance of miR-1b-3p in the chicken ovary is greater after sexual maturation. In the present study there was assessment of whether a single nucleotine polymorphism (SNP) led to an alteration in expression of reproductive traits. The miR-1b-3p abundance was greatest in ovarian follicles The SNP site of rs737028527 (G > A), located in the 734 bp upstream region of pre-miR-1b-3p, was identified in three different chicken breeds. Results from an association analysis of chicken egg-laying traits indicated the SNP was associated with age at first egg production (AFE) and egg number at 32 and 48 weeks (E32, E48; P < 0.01). Hens with genotype AA had an earlier AFE and greater E32 and E48 than hens with other genotypes. The abundance of mature miR-1b-3p in the hens with the GG genotype was larger than those with the AA genotype (P < 0.01), and the luciferase activity of GG genotype promoter was also greater in birds with the AA than GG genotype (P < 0.05). There was inhibition of the production of the transcription factor bound by the specificity protein 1 (Sp1) as a result of the G-to-A mutation, and the luciferase activity of the GG, but not AA, genotype was markedly increased by Sp1. In conclusion, the SNP, rs737028527 (G> A), affected the abundance of mature miR-1b-3p by Sp1 and was associated with chicken egg-laying traits. Data from the present study allow for an increased understanding of the functions and regulation of miR-1b-3p in ovarian follicle development of hens.
Collapse
Affiliation(s)
- Jianbo Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 271018, China
| | - Li Hou
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 271018, China
| | - Yi Sun
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 271018, China
| | - Jinyi Xing
- School of Life Science, Linyi University, Linyi 276000, China
| | - Yunliang Jiang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 271018, China
| | - Li Kang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 271018, China.
| |
Collapse
|
7
|
Yakovlev AF. The Role of miRNA in Differentiation, Cell Proliferation, and Pathogenesis of Poultry Diseases. Russ J Dev Biol 2019. [DOI: 10.1134/s1062360419030081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
8
|
Wang Y, Wang S, Wang S, Li G, Jiang R, Li Z, Han R, Kang X, Sun G. Target gene identification and functional characterization of miR-1704 in chicken. Anim Biotechnol 2019; 31:229-236. [PMID: 31039664 DOI: 10.1080/10495398.2019.1585365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
MiRNAs are small non-coding RNAs that negatively regulate gene expression at the post-transcriptional level. SNPs in miRNA genes may lead to phenotypic variation by altering miRNA expression and their targets. In this study, miR-1704 expression profiles in nine tissues at 1 d, 6 weeks and 16 weeks old Gushi chickens were detected. MiR-1704 was widely expressed in the detection of tissues. The expression in 1 d and 6 weeks old was low abundance, while its expression at 16 weeks was very high. An rs14668705 (C > G) SNP was detected within the pre-miR-1704 in an F2 resource population of Gushi chicken crossed with Anka broiler. Bioinformatic analysis indicated that the C > G mutation could introduce a base-pair mismatch and cause the change of free energy. Experiments further revealed that the rs14668705 in precursor miR-1704 could significantly affect mature miR-1704 biogenesis and was significantly associated with body weight at the age of 0, 6, 8, 10, and 12 weeks, shank circumference at 4, 8, and 12 weeks, carcass weight, and semi-evisceration weight (p < 0.05). Insulin receptor 2 (IRS2) gene, one of the potential targets of miR-1704 was identified and further confirmed. These data suggested that miR-1704 targeted IRS2 and have an effect on body weight in chicken.
Collapse
Affiliation(s)
- Yongcai Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, PR China
| | - Shunhong Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, PR China
| | - Shanghe Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, PR China
| | - Guoxi Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, PR China
| | - RuiRui Jiang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, PR China
| | - Zhuanjian Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, PR China
| | - Ruili Han
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, PR China
| | - Xiangtao Kang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, PR China
| | - Guirong Sun
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, PR China
| |
Collapse
|
9
|
Wu H, Fan F, Liang C, Zhou Y, Qiao X, Sun Y, Jiang Y, Kang L. Variants of pri-miR-26a-5p polymorphisms are associated with values for chicken egg production variables and affects abundance of mature miRNA. Anim Reprod Sci 2019; 201:93-101. [DOI: 10.1016/j.anireprosci.2019.01.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/21/2018] [Accepted: 01/02/2019] [Indexed: 12/18/2022]
|
10
|
Ji J, Qin Y, Zhou R, Zang R, Huang Z, Zhang Y, Chen M, Wu W, Song L, Ling X, Shen H, Hu Z, Xia Y, Lu C, Wang X. X chromosome-wide identification of SNVs in microRNA genes and non-obstructive azoospermia risk in Han Chinese population. Oncotarget 2016; 7:49122-49129. [PMID: 27107421 PMCID: PMC5226495 DOI: 10.18632/oncotarget.8759] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 03/28/2016] [Indexed: 01/05/2023] Open
Abstract
Human X chromosome has higher densities of microRNAs (miRNAs) compared to the average densities on autosomes. Given that numbers of X-linked miRNAs can escape from meiotic sex chromosome inactivation (MSCI) silencing, it is proposed that X-linked miRNAs may play critical roles in the process of spermatogenesis. To test the hypothesis, we performed DNA capture sequencing of human X-linked miRNAs, which was followed by a two-stage case-control study to identify the non-obstructive azoospermia (NOA) related single nucleotide variants (SNVs) in 1107 NOA cases and 1191 fertile healthy controls. Eventually, we found rs5951785, located near hsa-miRNA-506/507, increased the risk of NOA, while rs1447393, near hsa-miRNA-510, decreased the risk of NOA. Functional analysis revealed that rs5951785 significantly inhibited cell proliferation and induced cell apoptosis. Taken together, our results demonstrated that X-linked miRNAs played important roles in the pathogenesis of NOA.
Collapse
Affiliation(s)
- Juan Ji
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 210029, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, China
- Department of Children Health Care, Nanjing Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Nanjing 210029, China
| | - Yufeng Qin
- Epigenetics & Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Ran Zhou
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 210029, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Rujin Zang
- Department of Pediatric Surgery, State Key Laboratory of Reproductive Medicine, Nanjing Children's Hospital Affiliated Nanjing Medical University, Nanjing 210008, China
| | - Zhenyao Huang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 210029, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Yan Zhang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 210029, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Minjian Chen
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 210029, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Wei Wu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 210029, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Ling Song
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 210029, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Xiufeng Ling
- Department of Children Health Care, Nanjing Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Nanjing 210029, China
| | - Hongbing Shen
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 210029, China
- Department of Epidemiology and Biostatistics and Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Zhibin Hu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 210029, China
- Department of Epidemiology and Biostatistics and Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 210029, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Chuncheng Lu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 210029, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Xinru Wang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 210029, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|