1
|
Zhao C, Bai H, Li C, Pang Z, Xuan L, Lv D, Niu S. Genome-Wide Identification of the DOF Gene Family in Kiwifruit ( Actinidia chinensis) and Functional Validation of AcDOF22 in Response to Drought Stress. Int J Mol Sci 2024; 25:9103. [PMID: 39201789 PMCID: PMC11354610 DOI: 10.3390/ijms25169103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/18/2024] [Accepted: 08/21/2024] [Indexed: 09/03/2024] Open
Abstract
DNA-binding one zinc finger (DOF) transcription factors are crucial plant-specific regulators involved in growth, development, signal transduction, and abiotic stress response generation. However, the genome-wide identification and characterization of AcDOF genes and their regulatory elements in kiwifruit (Actinidia chinensis) has not been thoroughly investigated. In this study, we screened the kiwifruit genome database and identified 42 AcDOF genes (AcDOF1 to AcDOF42). Phylogenetic analysis facilitated the categorization of these genes into five subfamilies (DOF-a, DOF-b, DOF-c, DOF-d, and DOF-e). We further analyzed the motifs, conserved domains, gene structures, and collinearity of the AcDOFgene family. Gene ontology (GO) enrichment analysis indicated significant enrichment in the "flower development" term and the "response to abiotic stress" category. Promoter prediction analysis revealed numerous cis-regulatory elements related to responses to light, hormones, and low-temperature and drought stress in AcDOF promoters. RNA-seq expression profiles demonstrated the tissue-specific expression of AcDOF genes. Quantitative real-time PCR results showed that six selected genes (AcDOF04, AcDOF09, AcDOF11, AcDOF13, AcDOF21, and AcDOF22) were differentially induced by abscisic acid (ABA), methyl jasmonate (MeJA), and cold, salt, and drought stresses, with AcDOF22 specifically expressed at high levels in drought-tolerant cultivars. Further experiments indicated that transient AcDOF22 overexpression in kiwifruit leaf disks reduced water loss and chlorophyll degradation. Additionally, AcDOF22 was localized to the nucleus and exhibited transcriptional activation, enhancing drought resistance by activating the downstream drought marker gene AcDREB2A. These findings lay the foundation for elucidating the molecular mechanisms of drought resistance in kiwifruit and offer new insights into drought-resistant breeding.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shuaike Niu
- Biotechnology Laboratory, Shijiazhuang Institute of Pomology, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 05000, China; (C.Z.); (H.B.); (C.L.); (Z.P.); (L.X.); (D.L.)
| |
Collapse
|
2
|
Fu C, Xiao Y, Jiang N, Yang Y. Genome-wide identification and molecular evolution of Dof gene family in Camellia oleifera. BMC Genomics 2024; 25:702. [PMID: 39026173 PMCID: PMC11264790 DOI: 10.1186/s12864-024-10622-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024] Open
Abstract
DNA binding with one finger(Dof) gene family is a class of transcription factors which play an important role on plant growth and development. Genome-wide identification results indicated that there were 45 Dof genes(ColDof) in C.oleifera genome. All 45 ColDof proteins were non-transmembrane and non-secretory proteins. Phosphorylation site analysis showed that biological function of ColDof proteins were mainly realized by phosphorylation at serine (Ser) site. The secondary structure of 44 ColDof proteins was dominated by random coil, and only one ColDof protein was dominated by α-helix. ColDof genes' promoter region contained a variety of cis-acting elements, including light responsive regulators, gibberellin responsive regulators, abscisic acid responsive regulators, auxin responsive regulators and drought induction responsive regulators. The SSR sites analysis showed that the proportion of single nucleotide repeats and the frequency of A/T in ColDof genes were the largest. Non-coding RNA analysis showed that 45 ColDof genes contained 232 miRNAs. Transcription factor binding sites of ColDof genes showed that ColDof genes had 5793 ERF binding sites, 4381 Dof binding sites, 2206 MYB binding sites, 3702 BCR-BPC binding sites. ColDof9, ColDof39 and ColDof44 were expected to have the most TFBSs. The collinearity analysis showed that there were 40 colinear locis between ColDof proteins and AtDof proteins. Phylogenetic analysis showed that ColDof gene family was most closely related to that of Camellia sinensis var. sinensis cv.Biyun and Camellia lanceoleosa. Protein-protein interaction analysis showed that ColDof34, ColDof20, ColDof28, ColDof35, ColDof42 and ColDof26 had the most protein interactions. The transcriptome analysis of C. oleifera seeds showed that 21 ColDof genes were involved in the growth and development process of C. oleifera seeds, and were expressed in 221 C. oleifera varieties. The results of qRT-PCR experiments treated with different concentrations NaCl and PEG6000 solutions indicated that ColDof1, ColDof2, ColDof14 and ColDof36 not only had significant molecular mechanisms for salt stress tolerance, but also significant molecular functions for drought stress tolerance in C. oleifera. The results of this study provide a reference for further understanding of the function of ColDof genes in C.oleifera.
Collapse
Affiliation(s)
- Chun Fu
- Key Laboratory of Sichuan Province for Bamboo Pests Control and Resource Development, Leshan Normal University, No. 778 Binhe Road, Shizhong District, Leshan, Sichuan, 614000, China.
- College of Life Science, Leshan Normal University, No. 778 Binhe Road, Shizhong District, Leshan, Sichuan, 614000, China.
| | - YuJie Xiao
- Key Laboratory of Sichuan Province for Bamboo Pests Control and Resource Development, Leshan Normal University, No. 778 Binhe Road, Shizhong District, Leshan, Sichuan, 614000, China
- College of Life Science, Leshan Normal University, No. 778 Binhe Road, Shizhong District, Leshan, Sichuan, 614000, China
| | - Na Jiang
- College of Tourism and Geographical Science, Leshan Normal University, No. 778 Binhe Road, Shizhong District, Leshan, Sichuan, 614000, China
| | - YaoJun Yang
- Key Laboratory of Sichuan Province for Bamboo Pests Control and Resource Development, Leshan Normal University, No. 778 Binhe Road, Shizhong District, Leshan, Sichuan, 614000, China
- College of Life Science, Leshan Normal University, No. 778 Binhe Road, Shizhong District, Leshan, Sichuan, 614000, China
| |
Collapse
|
3
|
Cai K, Xie X, Han L, Chen J, Zhang J, Yuan H, Shen J, Ren Y, Zhao X. Identification and functional analysis of the DOF gene family in Populus simonii: implications for development and stress response. FRONTIERS IN PLANT SCIENCE 2024; 15:1412175. [PMID: 38779074 PMCID: PMC11109421 DOI: 10.3389/fpls.2024.1412175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024]
Abstract
Background Populus simonii, a notable native tree species in northern China, demonstrates impressive resistance to stress, broad adaptability, and exceptional hybridization potential. DOF family is a class of specific transcription factors that only exist in plants, widely participating in plant growth and development, and also playing an important role in abiotic stress response. To date, there have been no reported studies on the DOF gene family in P. simonii, and the expression levels of this gene family in different tissues of poplar, as well as its expression patterns under cold, heat, and other stress conditions, remain unclear. Methods In this study, DOF gene family were identified from the P. simonii genome, and various bioinformatics data on the DOF gene family, gene structure, gene distribution, promoters and regulatory networks were analyzed. Quantitative real time PCR technology was used to verify the expression patterns of the DOF gene family in different poplar tissues. Results This research initially pinpointed 41 PSDOF genes in P. simonii genome. The chromosomal localization results revealed that the PSDOF genes is unevenly distributed among 19 chromosomes, with the highest number of genes located on chromosomes 4, 5, and 11. A phylogenetic tree was constructed based on the homology between Arabidopsis thaliana and P. simonii, dividing the 41 PSDOF genes into seven subgroups. The expression patterns of PSDOF genes indicated that specific genes are consistently upregulated in various tissues and under different stress conditions, suggesting their pivotal involvement in both plant development and response to stress. Notably, PSDOF35 and PSDOF28 serve as pivotal hubs in the interaction network, playing a unique role in coordinating with other genes within the family. Conclusion The analysis enhances our comprehension of the functions of the DOF gene family in tissue development and stress responses within P. simonii. These findings provide a foundation for future exploration into the biological roles of DOF gene family.
Collapse
Affiliation(s)
- Kewei Cai
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun, China
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Xiaoyu Xie
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun, China
| | - Lu Han
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun, China
| | - Junbo Chen
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun, China
| | - Jinwang Zhang
- The Forest Tree Genetics and Breeding Laboratory, Tongliao Forestry and Grassland Science Research Institute, Tongliao, China
| | - Hongtao Yuan
- The Forest Tree Genetics and Breeding Laboratory, Tongliao Forestry and Grassland Science Research Institute, Tongliao, China
| | - Jiajia Shen
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun, China
| | - Yishuang Ren
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun, China
| | - Xiyang Zhao
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun, China
| |
Collapse
|
4
|
Gu F, Zhang W, Wang T, He X, Chen N, Zhang Y, Song C. Identification of Dof transcription factors in Dendrobium huoshanense and expression pattern under abiotic stresses. Front Genet 2024; 15:1394790. [PMID: 38711915 PMCID: PMC11070552 DOI: 10.3389/fgene.2024.1394790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 04/09/2024] [Indexed: 05/08/2024] Open
Abstract
Introduction: DNA-binding with one finger (Dof) transcription factors (TFs) are a unique family of TFs found in higher plants that regulate plant responses to light, hormones, and abiotic stresses. The specific involvement of Dof genes in the response to environmental stresses remains unknown in D. huoshanense. Methods: A total of 22 Dof family genes were identified from the D. huoshanense genome. Results: Chromosome location analysis showed that DhDof genes were distributed on 12 chromosomes, with the largest number of Dof genes located on chromosome 8. The phylogenetic tree revealed that DhDofs could be categorized into 11 distinct subgroups. In addition to the common groups, DhDof4, DhDof5, DhDof17, and the AtDof1.4 ortholog were clustered into the B3 subgroup. Group E was a newly identified branch, among which DhDof6, DhDof7, DhDof8, and DhDof9 were in an independent branch. The conserved motifs and gene structure revealed the differences in motif number and composition of DhDofs. The dof domain near the N-terminus was highly conserved and contained a C2-C2-type zinc finger structure linked with four cysteines. Microsynteny and interspecies collinearity revealed gene duplication events and phylogenetic tree among DhDofs. Large-scale gene duplication had not occurred among the DhDofs genes and only in one pair of genes on chromosome 13. Synteny blocks were found more often between D. huoshanense and its relatives and less often between Oryza sativa and Arabidopsis thaliana. Selection pressure analysis indicated that DhDof genes were subject to purifying selection. Expression profiles and correlation analyses revealed that the Dof gene under hormone treatments showed several different expression patterns. DhDof20 and DhDof21 had the highest expression levels and were co-expressed under MeJA induction. The cis-acting element analysis revealed that each DhDof had several regulatory elements involved in plant growth as well as abiotic stresses. qRT-PCR analysis demonstrated that DhDof2 was the main ABA-responsive gene and DhDof7 was the main cold stress-related gene. IAA suppressed the expression of some Dof candidates, and SA inhibited most of the candidate genes. Discussion: Our results may provide new insights for the further investigation of the Dof genes and the screening of the core stress-resistance genes.
Collapse
Affiliation(s)
- Fangli Gu
- Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
| | - Wenwu Zhang
- College of Life and Health Sciences, Anhui Science and Technology University, Fengyang, China
| | - Tingting Wang
- The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Xiaomei He
- Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
| | - Naifu Chen
- Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
| | - Yingyu Zhang
- The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Cheng Song
- Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
| |
Collapse
|
5
|
Li P, Fang T, Chong X, Chen J, Yue J, Wang Z. CmDOF18 positively regulates salinity tolerance in Chrysanthemum morifolium by activating the oxidoreductase system. BMC PLANT BIOLOGY 2024; 24:232. [PMID: 38561659 PMCID: PMC10985857 DOI: 10.1186/s12870-024-04914-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 03/15/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND Chrysanthemum, one of the four major cut flowers all over the world, is very sensitive to salinity during cultivation. DNA binding with one finger (DOF) transcription factors play important roles in biological processes in plants. The response mechanism of CmDOF18 from chrysanthemum to salt stress remains unclear. RESULTS In this study, CmDOF18 was cloned from Chrysanthemum morifolium, and its expression was induced by salinity stress. The gene encodes a 291-amino acid protein with a typical DOF domain. CmDOF18 was localized to the nucleus in onion epidermal cells and showed transcriptional activation in yeast. CmDOF18 transgenic plants were generated to identify the role of this gene in resistance to salinity treatment. Chrysanthemum plants overexpressing CmDOF18 were more resistant to salinity stress than wild-type plants. Under salinity stress, the malondialdehyde content and leaf electrolyte conductivity in CmDOF18-overexpressing transgenic plants were lower than those in wild-type plants, while the proline content, chlorophyll content, superoxide dismutase activity and peroxidase activity were higher than those in wild-type plants. The opposite findings were observed in gene-silenced plants compared with wild-type plants. The gene expression levels of oxidoreductase increased in CmDOF18-overexpressing transgenic plants but decreased in CmDOF18-SRDX gene-silenced transgenic plants. CONCLUSION In summary, we analyzed the function of CmDOF18 from chrysanthemum, which may regulate salinity stress in plants, possibly due to its role in the regulation of oxidoreductase.
Collapse
Affiliation(s)
- Peiling Li
- College of Horticulture, Xinyang Agriculture and Forestry University, Xinyang, 464000, China
| | - Tingting Fang
- College of Horticulture, Xinyang Agriculture and Forestry University, Xinyang, 464000, China
| | - Xinran Chong
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden Mem. Sun Yat-Sen, Nanjing, 210000, China
| | - Juanjuan Chen
- College of Horticulture, Xinyang Agriculture and Forestry University, Xinyang, 464000, China
| | - Jianhua Yue
- College of Horticulture, Xinyang Agriculture and Forestry University, Xinyang, 464000, China
| | - Zhiyong Wang
- College of Horticulture, Xinyang Agriculture and Forestry University, Xinyang, 464000, China.
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden Mem. Sun Yat-Sen, Nanjing, 210000, China.
| |
Collapse
|
6
|
Hussain M, Javed MM, Sami A, Shafiq M, Ali Q, Mazhar HSUD, Tabassum J, Javed MA, Haider MZ, Hussain M, Sabir IA, Ali D. Genome-wide analysis of plant specific YABBY transcription factor gene family in carrot (Dacus carota) and its comparison with Arabidopsis. BMC Genom Data 2024; 25:26. [PMID: 38443818 PMCID: PMC10916311 DOI: 10.1186/s12863-024-01210-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 02/19/2024] [Indexed: 03/07/2024] Open
Abstract
YABBY gene family is a plant-specific transcription factor with DNA binding domain involved in various functions i.e. regulation of style, length of flowers, and polarity development of lateral organs in flowering plants. Computational methods were utilized to identify members of the YABBY gene family, with Carrot (Daucus carota) 's genome as a foundational reference. The structure of genes, location of the chromosomes, protein motifs and phylogenetic investigation, syntony and transcriptomic analysis, and miRNA targets were analyzed to unmask the hidden structural and functional characteristics YABBY gene family in Carrots. In the following research, it has been concluded that 11 specific YABBY genes irregularly dispersed on all 9 chromosomes and proteins assembled into five subgroups i.e. AtINO, AtCRC, AtYAB5, AtAFO, and AtYAB2, which were created on the well-known classification of Arabidopsis. The wide ranges of YABBY genes in carrots were dispersed due to segmental duplication, which was detected as prevalent when equated to tandem duplication. Transcriptomic analysis showed that one of the DcYABBY genes was highly expressed during anthocyanin pigmentation in carrot taproots. The cis-regulatory elements (CREs) analysis unveiled elements that particularly respond to light, cell cycle regulation, drought induce ability, ABA hormone, seed, and meristem expression. Furthermore, a relative study among Carrot and Arabidopsis genes of the YABBY family indicated 5 sub-families sharing common characteristics. The comprehensive evaluation of YABBY genes in the genome provides a direction for the cloning and understanding of their functional properties in carrots. Our investigations revealed genome-wide distribution and role of YABBY genes in the carrots with best-fit comparison to Arabidopsis thaliana.
Collapse
Affiliation(s)
- Mujahid Hussain
- Department of Horticulture, Faculty of Agriculture Sciences, University of the Punjab, Lahore P. O BOX, Lahore, 54590, Pakistan
| | - Muhammad Mubashar Javed
- Department of Plant Breeding & Genetics, Faculty of Agriculture Sciences, University of the Punjab, P.O BOX, Lahore, 54590, Pakistan
| | - Adnan Sami
- Department of Plant Breeding & Genetics, Faculty of Agriculture Sciences, University of the Punjab, P.O BOX, Lahore, 54590, Pakistan
| | - Muhammad Shafiq
- Department of Horticulture, Faculty of Agriculture Sciences, University of the Punjab, Lahore P. O BOX, Lahore, 54590, Pakistan
| | - Qurban Ali
- Department of Plant Breeding & Genetics, Faculty of Agriculture Sciences, University of the Punjab, P.O BOX, Lahore, 54590, Pakistan.
| | - Hafiz Sabah-Ud-Din Mazhar
- Department of Plant Breeding & Genetics, Faculty of Agriculture Sciences, University of the Punjab, P.O BOX, Lahore, 54590, Pakistan
| | - Javaria Tabassum
- Department of Plant Breeding & Genetics, Faculty of Agriculture Sciences, University of the Punjab, P.O BOX, Lahore, 54590, Pakistan
| | - Muhammad Arshad Javed
- Department of Plant Breeding & Genetics, Faculty of Agriculture Sciences, University of the Punjab, P.O BOX, Lahore, 54590, Pakistan
| | - Muhammad Zeeshan Haider
- Department of Plant Breeding & Genetics, Faculty of Agriculture Sciences, University of the Punjab, P.O BOX, Lahore, 54590, Pakistan
| | - Muhammad Hussain
- Department of Horticulture, Faculty of Agriculture Sciences, University of the Punjab, Lahore P. O BOX, Lahore, 54590, Pakistan
| | - Irfan Ali Sabir
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Daoud Ali
- Department of Zoology, College of Science, King Saud University, PO Box 2455, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
7
|
Tabassum N, Shafiq M, Fatima S, Tahir S, Tabassum B, Ali Q, Javed MA. Genome-wide in-silico analysis of ethylene biosynthesis gene family in Musa acuminata L. and their response under nutrient stress. Sci Rep 2024; 14:558. [PMID: 38177217 PMCID: PMC10767074 DOI: 10.1038/s41598-023-51075-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 12/30/2023] [Indexed: 01/06/2024] Open
Abstract
Ethylene is a gaseous phytohormone involved in plants' growth and developmental processes, including seed germination, root initiation, fruit ripening, flower and leaf senescence, abscission, and stress responses. Ethylene biosynthesis (EB) gene analysis in response to nitrogen (N) and potassium (K) stress has not yet been conducted in Musa acuminata (banana) roots. The genome mining of banana (Musa acuminata L.) revealed 14 putative 1-aminocyclopropane-1-carboxylate synthase (ACS), 10 1-aminocyclopropane-1-carboxylate oxidase (ACO), and 3 Ethylene overproducer 1 (ETO1) genes. ACS, ACO, and ETO1 proteins possessed amino acid residues ranging from 422-684, 636-2670, and 893-969, respectively, with molecular weight (Mw) ranging from 4.93-7.55 kD, 10.1-8.3 kD and 10.1-10.78 kD. The number of introns present in ACS, ACO, and ETO1 gene sequences ranges from 0-14, 1-6, and 0-6, respectively. The cis-regulatory element analysis revealed the presence of light-responsive, abscisic acid, seed regulation, auxin-responsive, gibberellin element, endosperm-specific, anoxic inducibility, low-temperature responsiveness, salicylic acid responsiveness, meristem-specific and stress-responsive elements. Comprehensive phylogenetic analyses ACS, ACO, and ETO1 genes of Banana with Arabidopsis thaliana revealed several orthologs and paralogs assisting in understanding the putative functions of these genes. The expression profile of Musa acuminata genes in root under normal and low levels of nitrogen and potassium shows that MaACS14 and MaACO6 expressed highly at normal nitrogen supply. MaACS1 expression was significantly upregulated at low potassium levels, whereas, MaACO6 gene expression was significantly downregulated. The functional divergence and site-specific selective pressures on specific gene sequences of banana have been investigated. The bioinformatics-based genome-wide assessment of the family of banana attempted in the present study could be a significant step for deciphering novel ACS, ACO, and ETO1 genes based on genome-wide expression profiling.
Collapse
Affiliation(s)
- Nosheen Tabassum
- Department of Horticulture, Faculty of Agricultural Sciences, University of the Punjab New Campus, Lahore, Pakistan
| | - Muhammad Shafiq
- Department of Horticulture, Faculty of Agricultural Sciences, University of the Punjab New Campus, Lahore, Pakistan.
| | - Sameen Fatima
- Department of Horticulture, Faculty of Agricultural Sciences, University of the Punjab New Campus, Lahore, Pakistan
| | - Sana Tahir
- Department of Horticulture, Faculty of Agricultural Sciences, University of the Punjab New Campus, Lahore, Pakistan
| | - Bushra Tabassum
- School of Biological Sciences, University of the Punjab New Campus, Lahore, Pakistan
| | - Qurban Ali
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab New Campus, Lahore, Pakistan.
| | - Muhammad Arshad Javed
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab New Campus, Lahore, Pakistan
| |
Collapse
|
8
|
Liu W, Ren W, Liu X, He L, Qin C, Wang P, Kong L, Li Y, Liu Y, Ma W. Identification and characterization of Dof genes in Cerasus humilis. FRONTIERS IN PLANT SCIENCE 2023; 14:1152685. [PMID: 37077646 PMCID: PMC10106723 DOI: 10.3389/fpls.2023.1152685] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 03/21/2023] [Indexed: 05/03/2023]
Abstract
Introduction Dof genes encode plant-specific transcription factors, which regulate various biological processes such as growth, development, and secondary metabolite accumulation. Methods We conducted whole-genome analysis of Chinese dwarf cherry (Cerasus humilis) to identify ChDof genes and characterize the structure, motif composition, cis-acting elements, chromosomal distribution, and collinearity of these genes as well as the physical and chemical properties, amino acid sequences, and phylogenetic evolution of the encoded proteins. Results The results revealed the presence of 25 ChDof genes in C. humilis genome. All 25 ChDof genes could be divided into eight groups, and the members of the same group had similar motif arrangement and intron-exon structure. Promoter analysis showed that cis-acting elements responsive to abscisic acid, low temperature stress, and light were dominant. Transcriptome data revealed that most ChDof genes exhibited tissue-specific expression. Then, we performed by qRT-PCR to analyze the expression patterns of all 25 ChDof genes in fruit during storage. The results indicated that these genes exhibited different expression patterns, suggesting that they played an important role in fruit storage. Discussion The results of this study provide a basis for further investigation of the biological function of Dof genes in C. humilis fruit.
Collapse
Affiliation(s)
- Weili Liu
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
- Experimental Teaching and Training Center, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Weichao Ren
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiubo Liu
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
- School of Jiamusi, Heilongjiang University of Chinese Medicine, Jiamusi, China
| | - Lianqing He
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Chen Qin
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Panpan Wang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Lingyang Kong
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yang Li
- Berry Resource Research Center, Yichun Branch of Heilongjiang Academy of Forestry, Yichun, China
| | - Yunwei Liu
- Berry Resource Research Center, Yichun Branch of Heilongjiang Academy of Forestry, Yichun, China
| | - Wei Ma
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
- Experimental Teaching and Training Center, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
9
|
Zhang C, Dong T, Yu J, Hong H, Liu S, Guo F, Ma H, Zhang J, Zhu M, Meng X. Genome-wide survey and expression analysis of Dof transcription factor family in sweetpotato shed light on their promising functions in stress tolerance. FRONTIERS IN PLANT SCIENCE 2023; 14:1140727. [PMID: 36895872 PMCID: PMC9989284 DOI: 10.3389/fpls.2023.1140727] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
DNA-binding with one finger (Dof) transcription factors play a crucial role in plant abiotic stress regulatory networks, although massive Dofs have been systematically characterized in plants, they have not been identified in the hexaploid crop sweetpotato. Herein, 43 IbDof genes were detected to be disproportionally dispersed across 14 of the 15 chromosomes of sweetpotato, and segmental duplications were discovered to be the major driving force for the expansion of IbDofs. The collinearity analysis of IbDofs with their related orthologs from eight plants revealed the potential evolutionary history of Dof gene family. Phylogenetic analysis displayed that IbDof proteins were assigned into nine subfamilies, and the regularity of gene structures and conserved motifs was consistent with the subgroup classification. Additionally, five chosen IbDof genes were shown to be substantially and variably induced under various abiotic conditions (salt, drought, heat, and cold), as well as hormone treatments (ABA and SA), according to their transcriptome data and qRT-PCR experiments. Consistently, the promoters of IbDofs contained a number of cis-acting elements associated with hormone and stress responses. Besides, it was noted that IbDof2 had transactivation activity in yeasts, while IbDof-11/-16/-36 did not, and protein interaction network analysis and yeast two-hybrid experiments revealed a complicated interaction connection amongst IbDofs. Collectively, these data lay a foundation for further functional explorations of IbDof genes, especially with regards to the possible application of multiple IbDof members in breeding the tolerant plants.
Collapse
Affiliation(s)
- Chengbin Zhang
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Tingting Dong
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Jing Yu
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Haiting Hong
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Siyuan Liu
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Fen Guo
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Hongting Ma
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Jianling Zhang
- Laboratory of Plant Germplasm Innovation and Utilization, School of Life Sciences, Liaocheng University, Liaocheng, China
| | - Mingku Zhu
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Xiaoqing Meng
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| |
Collapse
|
10
|
Zou X, Sun H. DOF transcription factors: Specific regulators of plant biological processes. FRONTIERS IN PLANT SCIENCE 2023; 14:1044918. [PMID: 36743498 PMCID: PMC9897228 DOI: 10.3389/fpls.2023.1044918] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/03/2023] [Indexed: 06/12/2023]
Abstract
Plant biological processes, such as growth and metabolism, hormone signal transduction, and stress responses, are affected by gene transcriptional regulation. As gene expression regulators, transcription factors activate or inhibit target gene transcription by directly binding to downstream promoter elements. DOF (DNA binding with One Finger) is a classic transcription factor family exclusive to plants that is characterized by its single zinc finger structure. With breakthroughs in taxonomic studies of different species in recent years, many DOF members have been reported to play vital roles throughout the plant life cycle. They are not only involved in regulating hormone signals and various biotic or abiotic stress responses but are also reported to regulate many plant biological processes, such as dormancy, tissue differentiation, carbon and nitrogen assimilation, and carbohydrate metabolism. Nevertheless, some outstanding issues remain. This article mainly reviews the origin and evolution, protein structure, and functions of DOF members reported in studies published in many fields to clarify the direction for future research on DOF transcription factors.
Collapse
Affiliation(s)
- Xiaoman Zou
- Key Laboratory of Protected Horticulture of Education Ministry, College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Hongmei Sun
- Key Laboratory of Protected Horticulture of Education Ministry, College of Horticulture, Shenyang Agricultural University, Shenyang, China
- National and Local Joint Engineering Research Center of Northern Horticultural Facilities Design and Application Technology, Shenyang, China
| |
Collapse
|
11
|
Genome-Wide Identification and Analysis of DOF Gene Family in Eugenia uniflora L. (Myrtaceae). Genes (Basel) 2022; 13:genes13122235. [PMID: 36553502 PMCID: PMC9778057 DOI: 10.3390/genes13122235] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/16/2022] [Accepted: 11/19/2022] [Indexed: 11/29/2022] Open
Abstract
Eugenia uniflora is a Brazilian native plant species with great ecological and economic importance. It is distributed throughout the Atlantic forest, where two distinct populations show local adaptation to the contrasting conditions of restinga and riparian forest. Among various TFs described in plants, the DOF TF family has been reported to affect flowering and vascular development, making them promising candidates for characterization in E. uniflora. In this study, 28 DOF genes were identified by a genome-wide analysis, of which 20 were grouped into 11 MCOGs by Bayesian phylogeny, suggesting a shared functionallity between members. Based on RNA-seq experiments, we have detected eight drought responsive genes, and SNPs identification revealed population unique polymorphisms, implying a role in local adapatation mechanisms. Finally, analysis of conserved motifs through MEME revealed 15 different protein motifs, and a promoter region analysis returned 40 enriched TF binding motifs, both reporting novel biological functions circa the DOF gene family. In general, the DOF family is found to be conserved both in sequence and expression. Furthermore, this study contributes to both DOF literature and the genetic exploration of native species, elucidating their genetic potential and bringing to light new research topics, paving the way to future studies.
Collapse
|
12
|
Zhang F, Fan R, Yan L, Hu L, Su F, Yang D, Li J. Genome-wide identification of black pepper (Piper nigrum L.) Dof gene family and the differential gene screening in resistance to Phytophthora capsici. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01232-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
13
|
Gandass N, Salvi P. Intrinsically disordered protein, DNA binding with one finger transcription factor ( OsDOF27) implicates thermotolerance in yeast and rice. FRONTIERS IN PLANT SCIENCE 2022; 13:956299. [PMID: 35968137 PMCID: PMC9372624 DOI: 10.3389/fpls.2022.956299] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Intrinsically disorder regions or proteins (IDRs or IDPs) constitute a large subset of the eukaryotic proteome, which challenges the protein structure-function paradigm. These IDPs lack a stable tertiary structure, yet they play a crucial role in the diverse biological process of plants. This study represents the intrinsically disordered nature of a plant-specific DNA binding with one finger transcription factor (DOF-TF). Here, we have investigated the role of OsDOF27 and characterized it as an intrinsically disordered protein. Furthermore, the molecular role of OsDOF27 in thermal stress tolerance has been elucidated. The qRT-PCR analysis revealed that OsDOF27 was significantly upregulated under different abiotic stress treatments in rice, particularly under heat stress. The stress-responsive transcript induction of OsDOF27 was further correlated with enriched abiotic stress-related cis-regulatory elements present in its promoter region. The in vivo functional analysis of the potential role of OsDOF27 in thermotolerance was further studied in yeast and in planta. Ectopic expression of OsDOF27 in yeast implicates thermotolerance response. Furthermore, the rice transgenic lines with overexpressing OsDOF27 revealed a positive role in mitigating heat stress tolerance. Collectively, our results evidently show the intrinsically disorderedness in OsDOF27 and its role in thermal stress response in rice.
Collapse
|
14
|
Rehman A, Peng Z, Li H, Qin G, Jia Y, Pan Z, He S, Qayyum A, Du X. Genome wide analysis of IQD gene family in diploid and tetraploid species of cotton (Gossypium spp.). Int J Biol Macromol 2021; 184:1035-1061. [PMID: 34174315 DOI: 10.1016/j.ijbiomac.2021.06.115] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 05/31/2021] [Accepted: 06/16/2021] [Indexed: 12/25/2022]
Abstract
Calmodulin (CaM) is considered as the most significant Ca2+ signaling messenger that mediate various biochemical and physiological reactions. IQ domain (IQD) proteins are plant specific CML/CaM calcium binding which are characterized by domains of 67 amino acids. 50, 50, 94, and 99 IQD genes were detected from G. arboreum (A2), G. raimondii (D5), G. barbadense (AD2) and G. hirsutum (AD1) respectively. Existence of more orthologous genes in cotton species than Arabidopsis, advocated that polyploidization produced new cotton specific orthologous gene clusters. Duplication of gene events depicts that IQD gene family of cotton evolution was under strong purifying selection. G. hirsutum exhibited high level synteny. GarIQD25 exhibited high expression in stem, root, flower, ovule and fiber in G. arboreum. In G. raimondii, GraIQD03 demonstrated upregulation across stem, ovule, fiber and seed. GbaIQD11 and GbaIQD62 exhibited upregulation in fiber development in G. barbadense. GhiIQD69 recognized as main candidate genes for plant parts, floral tissues, fiber and ovule development. Promotor analysis identified cis-regulatory elements were involved in plant growth and development. Overwhelmingly, present study paves the way to better understand the evolution of cotton IQD genes and lays a foundation for future investigation of IQD in cotton.
Collapse
Affiliation(s)
- Abdul Rehman
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450000, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research Chinese Academy of Agricultural Science, Anyang 455000, Henan, China
| | - Zhen Peng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research Chinese Academy of Agricultural Science, Anyang 455000, Henan, China
| | - Hongge Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research Chinese Academy of Agricultural Science, Anyang 455000, Henan, China
| | - Guangyong Qin
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450000, China
| | - Yinhua Jia
- State Key Laboratory of Cotton Biology, Institute of Cotton Research Chinese Academy of Agricultural Science, Anyang 455000, Henan, China
| | - Zhaoe Pan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research Chinese Academy of Agricultural Science, Anyang 455000, Henan, China
| | - Shoupu He
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450000, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research Chinese Academy of Agricultural Science, Anyang 455000, Henan, China
| | - Abdul Qayyum
- Department of Plant Breeding and Genetics, Bahauddin Zakariya university, Multan 66000, Pakistan
| | - Xiongming Du
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450000, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research Chinese Academy of Agricultural Science, Anyang 455000, Henan, China.
| |
Collapse
|
15
|
Rehman A, Atif RM, Azhar MT, Peng Z, Li H, Qin G, Jia Y, Pan Z, He S, Qayyum A, Du X. Genome wide identification, classification and functional characterization of heat shock transcription factors in cultivated and ancestral cottons (Gossypium spp.). Int J Biol Macromol 2021; 182:1507-1527. [PMID: 33965497 DOI: 10.1016/j.ijbiomac.2021.05.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 11/30/2022]
Abstract
Heat shock transcription factors (HSF) have been demonstrated to play a significant transcriptional regulatory role in plants and considered as an integral part of signal transduction pathways against environmental stresses especially heat stress. Despite of their importance, HSFs have not yet been identified and characterized in all cotton species. In this study, we report the identification of 42, 39, 67, and 79 non-redundant HSF genes from diploid cottons G. arboreum (A2) and G. raimondii (D5), and tetraploid cottons G. barbadense (AD2) and G. hirsutum (AD1) respectively. The chromosome localization of identified HSFs revealed their random distribution on all the 13 chromosomes of A and D genomes of cotton with few regions containing HSFs in clusters. The genes structure and conserved domain analysis revealed the family-specific conservation of intron/exon organization and conserved domains in HSFs. Various abiotic stress-related cis-regulatory elements were identified from the putative promoter regions of cotton HSFs suggesting their possible role in mediating abiotic stress tolerance. The combined phylogenetic analysis of all the cotton HSFs grouped them into three subfamilies; with 145 HSFs belong to class A, 85 to class B, and 17 to class C subfamily. Moreover, a detailed analysis of HSF gene family in four species of cotton elucidated the role of allopolyploid and hybridization during evolutionary cascade of allotetraploid cotton. Comparatively, existence of more orthologous genes in cotton species than Arabidopsis, advocated that polyploidization produced new cotton specific orthologous gene clusters. Phylogenetic, collinearity and multiple synteny analyses exhibited dispersed, segmental, proximal, and tandem gene duplication events in HSF gene family. Duplication of gene events suggests that HSF gene family of cotton evolution was under strong purifying selection. Expression analysis revealed that GarHSF04 were found to be actively involved in PEG and salinity tolerance in G. arboreum. GhiHSF14 upregulated in heat and downregulated in salinity whilst almost illustrated similar behavior under cold and PEG treatments and GhiHSF21 exhibited down regulation almost across all the stresses in G. hirsutum. Overwhelmingly, present study paves the way to better understand the evolution of cotton HSF TFs and lays a foundation for future investigation of HSFs in improving abiotic stress tolerance in cotton.
Collapse
Affiliation(s)
- Abdul Rehman
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450000, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research Chinese Academy of Agricultural Science, Anyang 455000, Henan, China; Department of Plant Breeding and Genetics, Bahauddin Zakariya university, Multan 60800, Pakistan
| | - Rana Muhammad Atif
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad 38040, Pakistan; Center of Advanced Studies in Agriculture & Food Security, University of Agriculture, Faisalabad 38040, Pakistan.
| | - Muhammad Tehseen Azhar
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450000, China; Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Zhen Peng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research Chinese Academy of Agricultural Science, Anyang 455000, Henan, China
| | - Hongge Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research Chinese Academy of Agricultural Science, Anyang 455000, Henan, China
| | - Guangyong Qin
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450000, China
| | - Yinhua Jia
- State Key Laboratory of Cotton Biology, Institute of Cotton Research Chinese Academy of Agricultural Science, Anyang 455000, Henan, China
| | - Zhaoe Pan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research Chinese Academy of Agricultural Science, Anyang 455000, Henan, China
| | - Shoupu He
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450000, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research Chinese Academy of Agricultural Science, Anyang 455000, Henan, China
| | - Abdul Qayyum
- Department of Plant Breeding and Genetics, Bahauddin Zakariya university, Multan 60800, Pakistan
| | - Xiongming Du
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450000, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research Chinese Academy of Agricultural Science, Anyang 455000, Henan, China.
| |
Collapse
|
16
|
Wang P, Yan Z, Zong X, Yan Q, Zhang J. Genome-Wide Analysis and Expression Profiles of the Dof Family in Cleistogenes songorica under Temperature, Salt and ABA Treatment. PLANTS 2021; 10:plants10050850. [PMID: 33922432 PMCID: PMC8146245 DOI: 10.3390/plants10050850] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/05/2021] [Accepted: 04/19/2021] [Indexed: 12/05/2022]
Abstract
The DNA-binding with one zinc finger (Dof) family of plant-specific transcription factors has a variety of important functions in gene transcriptional regulation, development, and stress responses. However, the structure and expression patterns of Dof family have not been identified in Cleistogenes songorica, which is an important xerophytic and perennial gramineous grass in desert grassland. In this study, 50 Dof genes were identified in C. songorica and could be classified into four groups. According to genome-wide analysis, 46 of 50 Dof genes were located on 20 chromosomes, and the gene structure and conserved protein motif of these proteins were analyzed. In addition, phylogenetic analysis of Dof genes in C. songorica, Arabidopsis thaliana, Oryza sativa, and Brachypodium distachyon estimated the evolutionary relationships, and these genes were grouped into seven clusters. Moreover, the expression profiles of these Dof genes in C. songorica were analyzed in response to high/low temperature, salinity, and ABA treatments. These results will provide valuable information for future studies on gene classification, cloning, and functional characterization of this family in C. songorica.
Collapse
Affiliation(s)
| | | | | | | | - Jiyu Zhang
- Correspondence: ; Tel.: +86-138-9332-9958
| |
Collapse
|
17
|
Amin I, Rasool S, Mir MA, Wani W, Masoodi KZ, Ahmad P. Ion homeostasis for salinity tolerance in plants: a molecular approach. PHYSIOLOGIA PLANTARUM 2021; 171:578-594. [PMID: 32770745 DOI: 10.1111/ppl.13185] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/23/2020] [Accepted: 08/06/2020] [Indexed: 05/07/2023]
Abstract
Soil salinity is one of the major environmental stresses faced by the plants. Sodium chloride is the most important salt responsible for inducing salt stress by disrupting the osmotic potential. Due to various innate mechanisms, plants adapt to the sodic niche around them. Genes and transcription factors regulating ion transport and exclusion such as salt overly sensitive (SOS), Na+ /H+ exchangers (NHXs), high sodium affinity transporter (HKT) and plasma membrane protein (PMP) are activated during salinity stress and help in alleviating cells of ion toxicity. For salt tolerance in plants signal transduction and gene expression is regulated via transcription factors such as NAM (no apical meristem), ATAF (Arabidopsis transcription activation factor), CUC (cup-shaped cotyledon), Apetala 2/ethylene responsive factor (AP2/ERF), W-box binding factor (WRKY) and basic leucine zipper domain (bZIP). Cross-talk between all these transcription factors and genes aid in developing the tolerance mechanisms adopted by plants against salt stress. These genes and transcription factors regulate the movement of ions out of the cells by opening various membrane ion channels. Mutants or knockouts of all these genes are known to be less salt-tolerant compared to wild-types. Using novel molecular techniques such as analysis of genome, transcriptome, ionome and metabolome of a plant, can help in expanding the understanding of salt tolerance mechanism in plants. In this review, we discuss the genes responsible for imparting salt tolerance under salinity stress through transport dynamics of ion balance and need to integrate high-throughput molecular biology techniques to delineate the issue.
Collapse
Affiliation(s)
- Insha Amin
- Molecular Biology Lab, Division of Veterinary Biochemistry, FVSc & A.H., SKUAST, Shuhama, India
| | - Saiema Rasool
- Department of School Education, Govt. of Jammu & Kashmir, Srinagar, 190001, India
| | - Mudasir A Mir
- Transcriptomics Lab, Division of Plant Biotechnology, SKUAST-Kashmir, Shalimar, 190025, India
| | - Wasia Wani
- Transcriptomics Lab, Division of Plant Biotechnology, SKUAST-Kashmir, Shalimar, 190025, India
| | - Khalid Z Masoodi
- Transcriptomics Lab, Division of Plant Biotechnology, SKUAST-Kashmir, Shalimar, 190025, India
| | - Parvaiz Ahmad
- Botany and Microbiology Department, College of Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
- Department of Botany, S. P. College, Srinagar, Jammu and Kashmir, 190001, India
| |
Collapse
|
18
|
Genome-wide analysis and comparison of the DNA-binding one zinc finger gene family in diploid and tetraploid cotton (Gossypium). PLoS One 2020; 15:e0235317. [PMID: 32598401 PMCID: PMC7323982 DOI: 10.1371/journal.pone.0235317] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 06/09/2020] [Indexed: 01/14/2023] Open
Abstract
The Dof (DNA-binding one zinc finger) transcription factor family is a representative of plant-specific classes of transcription factors. In this study, we performed a genome-wide screening and characterization of the Dof gene family within two tetraploid species Gossypium barbadense, Gossypium hirsutum, and two diploid species Gossypium arboreum, Gossypium raimondii. 115, 116, 55 and 56 Dof genes were identified respectively and all of the genes contain a sequence encoding the Dof DNA-binding domain. Those genes were unevenly distributed across 13/26 chromosomes of the cotton. Genome comparison revealed that segmental duplication may have played crucial roles in the expansion of the cotton Dof gene family, and tandem duplication also played a minor role. Analysis of RNA-Seq data indicated that cotton Dof gene expression levels varied across different tissues and in response to different abiotic stress. Overall, our results could provide valuable information for better understanding the evolution of cotton Dof genes, and lays a foundation for future investigation in cotton.
Collapse
|
19
|
Genome-Wide Identification, Structure Characterization, and Expression Profiling of Dof Transcription Factor Gene Family in Wheat (Triticum aestivum L.). AGRONOMY-BASEL 2020. [DOI: 10.3390/agronomy10020294] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
DNA binding with one finger (Dof) proteins are plant-specific transcription factors with crucial roles in plant growth and stress response. Even so, little is known about them in wheat. In this study, 108 wheat Dof (TaDof) genes across 21 chromosomes were detected. Although variable in sequence length, molecular weight, and isoelectric point, all TaDof proteins contained conserved zinc-finger structures and were phylogenetically divided into 7 sub-groups. Exon/intron and motif analyses suggested that TaDof structures and conserved motifs were similar within sub-groups but diverse among sub-groups. Many segmental duplications were identified and Ka/Ks and inter-species synthetic analyses indicated that polyploidization was main reason for increased number of TaDofs. Prediction and experimental confirmation revealed that TaDofs functioned as transcription factors in the nucleus. Expression pattern profiling showed that TaDofs specifically affected growth and development, and biotic and abiotic stress responses. Wheat miRNAs and cis-regulator were predicted as essential players in molding TaDofs expression patterns. qRT-PCR analysis revealed that TaDofs were induced by salt and drought stresses. Customized annotation revealed that TaDofs were widely involved in phytohormone response, defense, growth and development, and metabolism. Our study provided a comprehensive understanding to wheat TaDofs.
Collapse
|
20
|
Zhou Y, Cheng Y, Wan C, Li J, Yang Y, Chen J. Genome-wide characterization and expression analysis of the Dof gene family related to abiotic stress in watermelon. PeerJ 2020; 8:e8358. [PMID: 32110479 PMCID: PMC7032062 DOI: 10.7717/peerj.8358] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 12/04/2019] [Indexed: 02/05/2023] Open
Abstract
The plant DNA-binding with one finger (Dof) gene family is a class of plant-specific transcription factors that play vital roles in many biological processes and stress responses. In the present study, a total of 36 ClDof genes were identified in the watermelon genome, which were unevenly distributed on 10 chromosomes. Phylogenetic analysis showed that the ClDof proteins could be divided into nine groups, and the members in a particular group had similar motif arrangement and exon-intron structure. Synteny analysis indicated the presence of a large number of syntenic relationship events between watermelon and cucumber. In promoter analysis, five kinds of stress-related and nine kinds of hormone-related cis-elements were identified in the promoter regions of ClDof genes. We then analyzed the expression patterns of nine selected ClDof genes in eight specific tissues by qRT-PCR, and the results showed that they have tissue-specific expression patterns. We also evaluated the expression levels of 12 selected ClDof genes under salt stress and ABA treatments using qRT-PCR. As a result, they showed differential expression under these treatments, suggesting their important roles in stress response. Taken together, our results provide a basis for future research on the biological functions of Dof genes in watermelon.
Collapse
Affiliation(s)
- Yong Zhou
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, China
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, Jiangxi Province, China
| | - Yuan Cheng
- Zhejiang Academy of Agricultural Sciences, State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Vegetables, Hanghzou, Zhejiang, China
| | - Chunpeng Wan
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, China
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Collaborative Innovation Center of Post-Harvest Key Technology and Quality Safety of Fruits and Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Jingwen Li
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, China
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Collaborative Innovation Center of Post-Harvest Key Technology and Quality Safety of Fruits and Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Youxin Yang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, China
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Collaborative Innovation Center of Post-Harvest Key Technology and Quality Safety of Fruits and Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Jinyin Chen
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, China
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Collaborative Innovation Center of Post-Harvest Key Technology and Quality Safety of Fruits and Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi, China
- Pingxiang University, Pingxiang, Jiangxi, China
| |
Collapse
|
21
|
Cheng Z, Hou D, Liu J, Li X, Xie L, Ma Y, Gao J. Characterization of moso bamboo (Phyllostachys edulis) Dof transcription factors in floral development and abiotic stress responses. Genome 2018; 61:151-156. [DOI: 10.1139/gen-2017-0189] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Dof transcription factor (TF) family belongs to a class of plant-specific TFs and is involved in plant growth, development, and response to abiotic stresses. However, there are only very limited reports on the characterization of Dof TFs in moso bamboo (Phyllostachys edulis). In the present research, PheDof TFs showed specific expression profiles based on RNA-seq data analyses. The co-expression network indicated that PheDof12, PheDof14, and PheDof16 might play vital roles during flower development. Cis-regulatory element analysis of these PheDof genes suggested diverse functions. Expression patterns of 12 selected genes from seven different classes under three abiotic stresses (cold, salt, and drought) are further investigated by quantitative real-time PCR. This work will provide useful information for functional analysis and regulation mechanisms of Dof TFs in moso bamboo.
Collapse
Affiliation(s)
- Zhanchao Cheng
- International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry Administration, Beijing 100102, People’s Republic of China
- International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry Administration, Beijing 100102, People’s Republic of China
| | - Dan Hou
- International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry Administration, Beijing 100102, People’s Republic of China
- International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry Administration, Beijing 100102, People’s Republic of China
| | - Jun Liu
- International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry Administration, Beijing 100102, People’s Republic of China
- International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry Administration, Beijing 100102, People’s Republic of China
| | - Xiangyu Li
- International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry Administration, Beijing 100102, People’s Republic of China
- International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry Administration, Beijing 100102, People’s Republic of China
| | - Lihua Xie
- International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry Administration, Beijing 100102, People’s Republic of China
- International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry Administration, Beijing 100102, People’s Republic of China
| | - Yanjun Ma
- International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry Administration, Beijing 100102, People’s Republic of China
- International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry Administration, Beijing 100102, People’s Republic of China
| | - Jian Gao
- International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry Administration, Beijing 100102, People’s Republic of China
- International Center for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry Administration, Beijing 100102, People’s Republic of China
| |
Collapse
|
22
|
Zhang Z, Yuan L, Liu X, Chen X, Wang X. Evolution analysis of Dof transcription factor family and their expression in response to multiple abiotic stresses in Malus domestica. Gene 2017; 639:137-148. [PMID: 28986315 DOI: 10.1016/j.gene.2017.09.039] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 08/30/2017] [Accepted: 09/19/2017] [Indexed: 10/18/2022]
Abstract
As a family of transcription factors, DNA binding with one figure (Dof) proteins play important roles in various biological processes in plants. Here, a total of 60 putative apple (Malus domestica) Dof genes (MdDof) were identified and mapped to different chromosomes. Chromosomal distribution and synteny analysis indicated that the expansion of the MdDof genes came primarily from segmental and duplication events, and from whole genome duplication, which lead to more Dof members in apples than in other plants. All 60 MdDof genes were classified into thirteen groups, according to multiple sequence alignment and the phylogenetic tree constructed of Dof genes from apple, peach (Prunus persica), Arabidopsis and rice. Within each group, the members shared a similar exon/intron and motif compositions, although the sizes of the MdDof genes and encoding proteins were quite different. Several Dof genes from the apple and peach were identified to be homologues based on their close synteny relationship, which suggested that these genes bear similar functions. Half of the MdDof genes were randomly selected to determine their responses to different stresses. The majority of MdDof genes were quite sensitive to PEG, NaCl, cold and exogenous ABA treatment. Our results suggested that MdDof family members may play important roles in plant tolerance to abiotic stress.
Collapse
Affiliation(s)
- Zhengrong Zhang
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Shandong, Taian 271018, People's Republic of China
| | - Li Yuan
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Shandong, Taian 271018, People's Republic of China
| | - Xin Liu
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Shandong, Taian 271018, People's Republic of China
| | - Xuesen Chen
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Shandong, Taian 271018, People's Republic of China
| | - Xiaoyun Wang
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Shandong, Taian 271018, People's Republic of China.
| |
Collapse
|