1
|
Zheng XM, Chen J, Pang HB, Liu S, Gao Q, Wang JR, Qiao WH, Wang H, Liu J, Olsen KM, Yang QW. Genome-wide analyses reveal the role of noncoding variation in complex traits during rice domestication. SCIENCE ADVANCES 2019; 5:eaax3619. [PMID: 32064312 PMCID: PMC6989341 DOI: 10.1126/sciadv.aax3619] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 10/30/2019] [Indexed: 05/17/2023]
Abstract
Genomes carry millions of noncoding variants, and identifying the tiny fraction with functional consequences is a major challenge for genomics. We assessed the role of selection on long noncoding RNAs (lncRNAs) for domestication-related changes in rice grains. Among 3363 lncRNA transcripts identified in early developing panicles, 95% of those with differential expression (329 lncRNAs) between Oryza sativa ssp. japonica and wild rice were significantly down-regulated in the domestication event. Joint genome and transcriptome analyses reveal that directional selection on lncRNAs altered the expression of energy metabolism genes during domestication. Transgenic experiments and population analyses with three focal lncRNAs illustrate that selection on these loci led to increased starch content and grain weight. Together, our findings indicate that genome-wide selection for lncRNA down-regulation was an important mechanism for the emergence of rice domestication traits.
Collapse
Affiliation(s)
- X. M. Zheng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - J. Chen
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - H. B. Pang
- College of Life Science, Shenyang Normal University, Shenyang 110034, China
| | - S. Liu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Q. Gao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - J. R. Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - W. H. Qiao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - H. Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - J. Liu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Corresponding author. (Q.W.Y.); (K.M.O.); (J.L.)
| | - K. M. Olsen
- Biology Department, Campus Box 1137, Washington University, St. Louis, MO 63130, USA
- Corresponding author. (Q.W.Y.); (K.M.O.); (J.L.)
| | - Q. W. Yang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Corresponding author. (Q.W.Y.); (K.M.O.); (J.L.)
| |
Collapse
|
2
|
Song C, Li W, Pei X, Liu Y, Ren Z, He K, Zhang F, Sun K, Zhou X, Ma X, Yang D. Dissection of the genetic variation and candidate genes of lint percentage by a genome-wide association study in upland cotton. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:1991-2002. [PMID: 30982110 DOI: 10.1007/s00122-019-03333-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 03/20/2019] [Indexed: 05/10/2023]
Abstract
A genome-wide associated study identified six novel QTLs for lint percentage. Two candidate genes underlying this trait were also detected. Increasing lint percentage (LP) is a core goal of cotton breeding. To better understand the genetic basis of LP, a genome-wide association study (GWAS) was conducted using 276 upland cotton accessions planted in multiple environments and genotyped with a CottonSNP63K array. After filtering, 10,660 high-quality single-nucleotide polymorphisms (SNPs) were retained. Population structure, principal component and neighbor-joining phylogenetic tree analyses divided the accessions into two subpopulations. These results along with linkage disequilibrium decay indicated accessions were not highly structured and exhibited weak relatedness. GWAS uncovered 23 polymorphic SNPs and 15 QTLs significantly associated with LP, with six new QTLs identified. Two candidate genes, Gh_D05G0313 and Gh_D05G1124, both contained one significant SNP, highly expressed during ovule and fiber development stages, implying that the two genes may act as the most promising regulators of LP. Furthermore, the phenotypic value of LP was found to be positively correlated with the number of favorable SNP alleles. These favorable alleles for LP identified in the study may be useful for improving lint yield.
Collapse
Affiliation(s)
- Chengxiang Song
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- College of Agriculture, Yangtze University, Jingzhou, 434025, China
| | - Wei Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Xiaoyu Pei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Yangai Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Zhongying Ren
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Kunlun He
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Fei Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Kuan Sun
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Xiaojian Zhou
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Xiongfeng Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
| | - Daigang Yang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
| |
Collapse
|
3
|
Luo Z, Tomasi P, Fahlgren N, Abdel-Haleem H. Genome-wide association study (GWAS) of leaf cuticular wax components in Camelina sativa identifies genetic loci related to intracellular wax transport. BMC PLANT BIOLOGY 2019; 19:187. [PMID: 31064322 PMCID: PMC6505076 DOI: 10.1186/s12870-019-1776-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 04/12/2019] [Indexed: 05/23/2023]
Abstract
BACKGROUND It is important to explore renewable alternatives (e.g. biofuels) that can produce energy sources to help reduce reliance on fossil oils, and reduce greenhouse gases and waste solids resulted from fossil oils consumption. Camelina sativa is an oilseed crop which has received increasing attention due to its short life cycle, broader adaptation regions, high oil content, high level of omega-3 unsaturated fatty acids, and low-input requirements in agriculture practices. To expand its Camelina production areas into arid regions, there is a need to breed for new drought-tolerant cultivars. Leaf cuticular wax is known to facilitate plant development and growth under water-limited conditions. Dissecting the genetic loci underlying leaf cuticular waxes is important to breed for cultivars with improved drought tolerance. RESULTS Here we combined phenotypic data and single nucleotide polymorphism (SNP) data from a spring C. sativa diversity panel using genotyping-by-sequencing (GBS) technology, to perform a large-scale genome-wide association study (GWAS) on leaf wax compositions. A total of 42 SNP markers were significantly associated with 15 leaf wax traits including major wax components such as total primary alcohols, total alkanes, and total wax esters as well as their constituents. The vast majority of significant SNPs were associated with long-chain carbon monomers (carbon chain length longer than C28), indicating the important effects of long-chain carbon monomers on leaf total wax biosynthesis. These SNP markers are located on genes directly or indirectly related to wax biosynthesis such as maintaining endoplasmic reticulum (ER) morphology and enabling normal wax secretion from ER to plasma membrane or Golgi network-mediated transport. CONCLUSIONS These loci could potentially serve as candidates for the genetic control involved in intracellular wax transport that might directly or indirectly facilitate leaf wax accumulation in C. sativa and can be used in future marker-assisted selection (MAS) to breed for the cultivars with high wax content to improve drought tolerance.
Collapse
Affiliation(s)
- Zinan Luo
- US Arid Land Agricultural Research Center, USDA ARS, Maricopa, AZ 85138 USA
| | - Pernell Tomasi
- US Arid Land Agricultural Research Center, USDA ARS, Maricopa, AZ 85138 USA
| | - Noah Fahlgren
- Danforth Plant Science Center, St. Louis, MO 63132 USA
| | | |
Collapse
|
4
|
Morgan TJ, Herman MA, Johnson LC, Olson BJ, Ungerer MC. Ecological Genomics: genes in ecology and ecology in genes. Genome 2018; 61:v-vii. [DOI: 10.1139/gen-2018-0022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Theodore J. Morgan
- Division of Biology and Ecological Genomics Institute, Kansas State University, Manhattan, KS 66506, USA
- Division of Biology and Ecological Genomics Institute, Kansas State University, Manhattan, KS 66506, USA
| | - Michael A. Herman
- Division of Biology and Ecological Genomics Institute, Kansas State University, Manhattan, KS 66506, USA
- Division of Biology and Ecological Genomics Institute, Kansas State University, Manhattan, KS 66506, USA
| | - Loretta C. Johnson
- Division of Biology and Ecological Genomics Institute, Kansas State University, Manhattan, KS 66506, USA
- Division of Biology and Ecological Genomics Institute, Kansas State University, Manhattan, KS 66506, USA
| | - Bradley J.C.S. Olson
- Division of Biology and Ecological Genomics Institute, Kansas State University, Manhattan, KS 66506, USA
- Division of Biology and Ecological Genomics Institute, Kansas State University, Manhattan, KS 66506, USA
| | - Mark C. Ungerer
- Division of Biology and Ecological Genomics Institute, Kansas State University, Manhattan, KS 66506, USA
- Division of Biology and Ecological Genomics Institute, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|