1
|
Clevinger EM, Biyashev R, Lerch-Olson E, Yu H, Quigley C, Song Q, Dorrance AE, Robertson AE, Saghai Maroof MA. Identification of Quantitative Disease Resistance Loci Toward Four Pythium Species in Soybean. FRONTIERS IN PLANT SCIENCE 2021; 12:644746. [PMID: 33859662 PMCID: PMC8042330 DOI: 10.3389/fpls.2021.644746] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/08/2021] [Indexed: 06/01/2023]
Abstract
In this study, four recombinant inbred line (RIL) soybean populations were screened for their response to infection by Pythium sylvaticum, Pythium irregulare, Pythium oopapillum, and Pythium torulosum. The parents, PI 424237A, PI 424237B, PI 408097, and PI 408029, had higher levels of resistance to these species in a preliminary screening and were crossed with "Williams," a susceptible cultivar. A modified seed rot assay was used to evaluate RIL populations for their response to specific Pythium species selected for a particular population based on preliminary screenings. Over 2500 single-nucleotide polymorphism (SNP) markers were used to construct chromosomal maps to identify regions associated with resistance to Pythium species. Several minor and large effect quantitative disease resistance loci (QDRL) were identified including one large effect QDRL on chromosome 8 in the population of PI 408097 × Williams. It was identified by two different disease reaction traits in P. sylvaticum, P. irregulare, and P. torulosum. Another large effect QDRL was identified on chromosome 6 in the population of PI 408029 × Williams, and conferred resistance to P. sylvaticum and P. irregulare. These large effect QDRL will contribute toward the development of improved soybean cultivars with higher levels of resistance to these common soil-borne pathogens.
Collapse
Affiliation(s)
- Elizabeth M. Clevinger
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Ruslan Biyashev
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Elizabeth Lerch-Olson
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, United States
| | - Haipeng Yu
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Charles Quigley
- Soybean Genomics and Improvement Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States
| | - Qijian Song
- Soybean Genomics and Improvement Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States
| | - Anne E. Dorrance
- Center for Applied Plant Sciences and Soybean Research, Department of Plant Pathology, Ohio State Sustainability Institute, The Ohio State University, Wooster, OH, United States
| | - Alison E. Robertson
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, United States
| | - M. A. Saghai Maroof
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
2
|
Li MW, Wang Z, Jiang B, Kaga A, Wong FL, Zhang G, Han T, Chung G, Nguyen H, Lam HM. Impacts of genomic research on soybean improvement in East Asia. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:1655-1678. [PMID: 31646364 PMCID: PMC7214498 DOI: 10.1007/s00122-019-03462-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/15/2019] [Indexed: 05/10/2023]
Abstract
It has been commonly accepted that soybean domestication originated in East Asia. Although East Asia has the historical merit in soybean production, the USA has become the top soybean producer in the world since 1950s. Following that, Brazil and Argentina have been the major soybean producers since 1970s and 1990s, respectively. China has once been the exporter of soybean to Japan before 1990s, yet she became a net soybean importer as Japan and the Republic of Korea do. Furthermore, the soybean yield per unit area in East Asia has stagnated during the past decade. To improve soybean production and enhance food security in these East Asian countries, much investment has been made, especially in the breeding of better performing soybean germplasms. As a result, China, Japan, and the Republic of Korea have become three important centers for soybean genomic research. With new technologies, the rate and precision of the identification of important genomic loci associated with desired traits from germplasm collections or mutants have increased significantly. Genome editing on soybean is also becoming more established. The year 2019 marked a new era for crop genome editing in the commercialization of the first genome-edited plant product, which is a high-oleic-acid soybean oil. In this review, we have summarized the latest developments in soybean breeding technologies and the remarkable progress in soybean breeding-related research in China, Japan, and the Republic of Korea.
Collapse
Affiliation(s)
- Man-Wah Li
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region China
| | - Zhili Wang
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region China
| | - Bingjun Jiang
- Ministry of Agriculture Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081 China
| | - Akito Kaga
- Soybean and Field Crop Applied Genomics Research Unit, Institute of Crop Science, National Agriculture and Food Research Organization, Kannondai 2-1-2, Tsukuba, Ibaraki 305-8518 Japan
| | - Fuk-Ling Wong
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region China
| | - Guohong Zhang
- Institute of Dryland Agriculture, Gansu Academy of Agricultural Sciences, Key Laboratory of Northwest Drought Crop Cultivation of Chinese Ministry of Agriculture, Lanzhou, 730070 China
| | - Tianfu Han
- Ministry of Agriculture Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081 China
| | - Gyuhwa Chung
- Department of Biotechnology, Chonnam National University, Yeosu, Chonnam 59626 Korea
| | - Henry Nguyen
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri, Columbia, MO USA
| | - Hon-Ming Lam
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region China
| |
Collapse
|
3
|
Xiong L, Li C, Li H, Lyu X, Zhao T, Liu J, Zuo Z, Liu B. A transient expression system in soybean mesophyll protoplasts reveals the formation of cytoplasmic GmCRY1 photobody-like structures. SCIENCE CHINA. LIFE SCIENCES 2019; 62:1070-1077. [PMID: 30929191 DOI: 10.1007/s11427-018-9496-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 01/30/2019] [Indexed: 10/27/2022]
Abstract
Soybean (Glycine max (L.) Merr.), grown for its plant oils and proteins, is one of the most important crops throughout the world. Generating stable and heritable transgenic soybeans is relatively inefficient; therefore, there is an urgent need for a simple and high-efficient transient transformation method by which to enable the investigation of gene functions in soybeans, which will facilitate the elucidation and improvement of the molecular mechanisms regulating the associated agronomic traits. We established a system of transient expression in soybean mesophyll protoplasts and obtained a high level of protoplast transfection efficiency (up to 83.5%). The subcellular activity of the protoplasts was well preserved, as demonstrated by the dynamic formation of GmCRY nucleus photobodies (NPs) and/or cytoplasmic photobody-like structures (CPs) in response to blue light. In addition, we showed that GmCRY1b CPs colocalized with GmCOP1b, a co-ortholog of Arabidopsis thaliana CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1), which provided new insight into the potential roles of GmCRY1s in the cytoplasm.
Collapse
Affiliation(s)
- Lu Xiong
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, 130062, China
| | - Cong Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hongyu Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiangguang Lyu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Tao Zhao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jun Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zecheng Zuo
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, 130062, China.
| | - Bin Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
4
|
Lee DH, Kulkarni KP, Kim BO, Seok YM, Song JT, Lee JD. Comparative assessment of quality characteristics of Chungkookjang made from soybean seeds differing in oleic acid concentration. J Funct Foods 2019. [DOI: 10.1016/j.jff.2018.10.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|