1
|
Badaeva ED, Davoyan RO, Tereshchenko NA, Lyalina EV, Zoshchuk SA, Goncharov NP. Cytogenetic features of intergeneric amphydiploids and genome-substituted forms of wheat. Vavilovskii Zhurnal Genet Selektsii 2024; 28:716-730. [PMID: 39722674 PMCID: PMC11668819 DOI: 10.18699/vjgb-24-80] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/01/2024] [Accepted: 08/08/2024] [Indexed: 12/28/2024] Open
Abstract
Synthetic intergeneric amphydiploids and genome-substituted wheat forms are an important source for transferring agronomically valuable genes from wild species into the common wheat (Triticum aestivum L.) genome. They can be used both in academic research and for breeding purposes as an original material for developing wheat-alien addition and substitution lines followed by translocation induction with the aid of irradiation or nonhomologous chromosome pairing. The chromosome sets and genome constitutions of allopolyploids are usually verified in early hybrid generations, whereas the subsequent fate of these hybrids remains unknown in most cases. Here we analyze karyotypes of five hexa- (2n = 6x = 42) and octoploid (2n = 8x = 56) amphydiploids of wheat with several species of the Aegilops, Haynaldia, and Hordeum genera, and six genome-substituted wheat-Aegilops forms, which were developed over 40 years ago and have been maintained in different gene banks. The analyses involve C-banding and fluorescence in situ hybridization (FISH) with pAs1 and pSc119.2 probes. We have found that most accessions are cytologically stable except for Avrodes (genome BBAASS, a hexaploid genome-substituted hybrid of wheat and Aegilops speltoides), which segregated with respect to chromosome composition after numerous reproductions. Chromosome analysis has not confirmed the presence of the N genome from Ae. uniaristata Vis. in the genome-substituted hybrid Avrotata. Instead, Avrotata carries the D genome. Our study shows that octoploid hybrids, namely AD 7, AD 7147 undergo more complex genome reorganizations as compared to hexaploids: the chromosome number of two presumably octoploid wheat-Aegilops hybrids were reduced to the hexaploid level. Genomes of both forms lost seven chromosome pairs, which represented seven homoeologous groups and derived from different parental subgenomes. Thus, each of the resulting hexaploids carries a synthetic/hybrid genome consisting of a unique combination of chromosomes belonging to different parental subgenomes.
Collapse
Affiliation(s)
- E D Badaeva
- N.I. Vavilov Institute of General Genetics of the Russian Academy of Sciences, Moscow, Russia
| | - R O Davoyan
- National Center of Grain named after P.P. Lukyanenko, Krasnodar, Russia
| | - N A Tereshchenko
- N.I. Vavilov Institute of General Genetics of the Russian Academy of Sciences, Moscow, Russia
| | - E V Lyalina
- N.I. Vavilov Institute of General Genetics of the Russian Academy of Sciences, Moscow, Russia
| | - S A Zoshchuk
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, Moscow, Russia
| | - N P Goncharov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
2
|
Shi P, Sun H, Liu G, Zhang X, Zhou J, Song R, Xiao J, Yuan C, Sun L, Wang Z, Lou Q, Jiang J, Wang X, Wang H. Chromosome painting reveals inter-chromosomal rearrangements and evolution of subgenome D of wheat. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:55-67. [PMID: 35998122 DOI: 10.1111/tpj.15926] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/16/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
Aegilops species represent the most important gene pool for breeding bread wheat (Triticum aestivum). Thus, understanding the genome evolution, including chromosomal structural rearrangements and syntenic relationships among Aegilops species or between Aegilops and wheat, is important for both basic genome research and practical breeding applications. In the present study, we attempted to develop subgenome D-specific fluorescence in situ hybridization (FISH) probes by selecting D-specific oligonucleotides based on the reference genome of Chinese Spring. The oligo-based chromosome painting probes consisted of approximately 26 000 oligos per chromosome and their specificity was confirmed in both diploid and polyploid species containing the D subgenome. Two previously reported translocations involving two D chromosomes have been confirmed in wheat varieties and their derived lines. We demonstrate that the oligo painting probes can be used not only to identify the translocations involving D subgenome chromosomes, but also to determine the precise positions of chromosomal breakpoints. Chromosome painting of 56 accessions of Ae. tauschii from different origins led us to identify two novel translocations: a reciprocal 3D-7D translocation in two accessions and a complex 4D-5D-7D translocation in one accession. Painting probes were also used to analyze chromosomes from more diverse Aegilops species. These probes produced FISH signals in four different genomes. Chromosome rearrangements were identified in Aegilops umbellulata, Aegilops markgrafii, and Aegilops uniaristata, thus providing syntenic information that will be valuable for the application of these wild species in wheat breeding.
Collapse
Affiliation(s)
- Peiyao Shi
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agronomy, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095, Jiangsu, China
| | - Haojie Sun
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agronomy, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095, Jiangsu, China
| | - Guanqing Liu
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Co-Innovation Centre for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Xu Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agronomy, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095, Jiangsu, China
| | - Jiawen Zhou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agronomy, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095, Jiangsu, China
| | - Rongrong Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agronomy, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095, Jiangsu, China
| | - Jin Xiao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agronomy, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095, Jiangsu, China
| | - Chunxia Yuan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agronomy, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095, Jiangsu, China
| | - Li Sun
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agronomy, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095, Jiangsu, China
| | - Zongkuan Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agronomy, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095, Jiangsu, China
| | - Qunfeng Lou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiming Jiang
- Department of Plant Biology, Department of Horticulture, MSU AgBioResearch, Michigan State University, East Lansing, Michigan, 48824, USA
| | - Xiue Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agronomy, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095, Jiangsu, China
| | - Haiyan Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agronomy, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095, Jiangsu, China
| |
Collapse
|
3
|
Li D, Ruban A, Fuchs J, Kang H, Houben A. B-A Chromosome Translocations Possessing an A Centromere Partly Overcome the Root-Restricted Process of Chromosome Elimination in Aegilops speltoides. Front Cell Dev Biol 2022; 10:875523. [PMID: 35419361 PMCID: PMC8995527 DOI: 10.3389/fcell.2022.875523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/11/2022] [Indexed: 12/02/2022] Open
Abstract
Some eukaryotes exhibit dramatic genome size differences between cells of different organs, resulting from the programmed elimination of chromosomes. Aegilops speltoides is an annual diploid species from the Poaceae family, with a maximum number of eight B chromosomes (Bs) in addition to its inherent seven pairs of standard A chromosomes (As). The Bs of this species undergo precise elimination in roots early in embryo development. In areal parts of the plant, the number of Bs is stable. To affect the root restricted process of B chromosome elimination, we employed X-ray mutagenesis, and different types of restructured Bs were identified. Standard Bs were observed in all analyzed shoots of mutagenized plants, while B-A translocations were only observed in 35.7% of F1 plants. In total 40 different B variants inconsistently escaped the elimination process in roots. As a result, mosaicism of B chromosome variants was found in roots. Only a small B chromosome fragment fused to an A chromosome was stably maintained in roots and shoots across F1 to F3 generations. The absence of B-A translocation chromosomes possessing a derived B centromere in root cells implies that the centromere of the B is a key component of the chromosome elimination process.
Collapse
Affiliation(s)
- Daiyan Li
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany.,State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China.,Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Alevtina Ruban
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany.,KWS SAAT SE & Co. KGaA, Einbeck, Germany
| | - Jörg Fuchs
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Houyang Kang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China.,Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Andreas Houben
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| |
Collapse
|
4
|
Keilwagen J, Lehnert H, Berner T, Badaeva E, Himmelbach A, Börner A, Kilian B. Detecting major introgressions in wheat and their putative origins using coverage analysis. Sci Rep 2022; 12:1908. [PMID: 35115645 PMCID: PMC8813953 DOI: 10.1038/s41598-022-05865-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 01/12/2022] [Indexed: 12/11/2022] Open
Abstract
Introgressions from crop wild relatives (CWRs) have been used to introduce beneficial traits into cultivated plants. Introgressions have traditionally been detected using cytological methods. Recently, single nucleotide polymorphism (SNP)-based methods have been proposed to detect introgressions in crosses for which both parents are known. However, for unknown material, no method was available to detect introgressions and predict the putative donor species. Here, we present a method to detect introgressions and the putative donor species. We demonstrate the utility of this method using 10 publicly available wheat genome sequences and identify nine major introgressions. We show that the method can distinguish different introgressions at the same locus. We trace introgressions to early wheat cultivars and show that natural introgressions were utilised in early breeding history and still influence elite lines today. Finally, we provide evidence that these introgressions harbour resistance genes.
Collapse
Affiliation(s)
| | | | | | - Ekaterina Badaeva
- N.I. Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
- The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences (ICG SB RAS), Novosibirsk, Russia
| | - Axel Himmelbach
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Andreas Börner
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | | |
Collapse
|
5
|
Keilwagen J, Lehnert H, Berner T, Badaeva E, Himmelbach A, Börner A, Kilian B. Detecting major introgressions in wheat and their putative origins using coverage analysis. Sci Rep 2022; 12:1908. [PMID: 35115645 DOI: 10.21203/rs.3.rs-910879/v1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 01/12/2022] [Indexed: 05/26/2023] Open
Abstract
Introgressions from crop wild relatives (CWRs) have been used to introduce beneficial traits into cultivated plants. Introgressions have traditionally been detected using cytological methods. Recently, single nucleotide polymorphism (SNP)-based methods have been proposed to detect introgressions in crosses for which both parents are known. However, for unknown material, no method was available to detect introgressions and predict the putative donor species. Here, we present a method to detect introgressions and the putative donor species. We demonstrate the utility of this method using 10 publicly available wheat genome sequences and identify nine major introgressions. We show that the method can distinguish different introgressions at the same locus. We trace introgressions to early wheat cultivars and show that natural introgressions were utilised in early breeding history and still influence elite lines today. Finally, we provide evidence that these introgressions harbour resistance genes.
Collapse
Affiliation(s)
| | | | | | - Ekaterina Badaeva
- N.I. Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
- The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences (ICG SB RAS), Novosibirsk, Russia
| | - Axel Himmelbach
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Andreas Börner
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | | |
Collapse
|
6
|
Sibikeev SN, Baranova OA, Druzhin AE. A prebreeding study of introgression spring bread wheat lines carrying combinations of stem rust resistance genes, Sr22+Sr25 and Sr35+Sr25. Vavilovskii Zhurnal Genet Selektsii 2021; 25:713-722. [PMID: 34964018 PMCID: PMC8652544 DOI: 10.18699/vj21.081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 07/08/2021] [Accepted: 07/08/2021] [Indexed: 11/19/2022] Open
Abstract
The Sr22, Sr35, and Sr25 genes attract the attention of bread wheat breeders with their effectiveness against Puccinia graminis f. sp. tritici race Ug99 and its biotypes. The effectiveness and impact of Sr22+Sr25 and Sr35+Sr25 gene combinations on agronomic traits have not yet been studied. In the present article, these traits were studied using the spring bread wheat lines L503/W3534//L503, L503/Sr35//L503/3/L503 carrying the Sr22+Sr25 and Sr35+Sr25 genes during 2016-2020. These lines were assessed for resistance to P. graminis f. sp. tritici under natural epiphytotics and to the Saratov, Lysogorsk and Omsk populations of the pathogen and to the PgtZ1 (TKSTF) and PgtF18.6 fungus isolates in laboratory conditions (TKSTF + Sr33). The presence of the studied Sr-genes was conf irmed by using molecular markers. Prebreeding studies were conducted during 2018-2020 vegetation periods. Under the natural epiphytotics of the pathogen and in the laboratory conditions, the Sr22+Sr25 combination was highly effective, while Sr35+Sr25 was ineffective. For grain yield, the lines with the Sr22+Sr25 and Sr35+Sr25 genes were superior to the recipient cultivar L503 in one year (Sr22+Sr25 in 2019; Sr35+Sr25 in 2018), with a decrease in 2020, but in general there were no differences. For the period 2018-2020, both combinations showed a decrease in 1000 grains weight and an increase in the germination-earing period. The line with Sr22+Sr25 genes showed insignif icant effects on gluten and dough tenacity, but the ratio of dough tenacity to extensibility was higher, and f lour strength, porosity and bread volume were lower; in the line with Sr35+Sr25 genes, the gluten content was lower, but the strength, tenacity of the dough and the ratio of dough tenacity to extensibility were higher, f lour strength and the porosity of the bread were at the recipient level, but the volume of bread was lower.
Collapse
Affiliation(s)
- S N Sibikeev
- Federal Center of Agriculture Research of the South-East Region, Saratov, Russia
| | - O A Baranova
- All-Russian Institute of Plant Protection, Pushkin, St. Petersburg, Russia
| | - A E Druzhin
- Federal Center of Agriculture Research of the South-East Region, Saratov, Russia
| |
Collapse
|
7
|
Badaeva ED, Chikida NN, Fisenko AN, Surzhikov SA, Belousova MK, Özkan H, Dragovich AY, Kochieva EZ. Chromosome and Molecular Analyses Reveal Significant Karyotype Diversity and Provide New Evidence on the Origin of Aegilops columnaris. PLANTS (BASEL, SWITZERLAND) 2021; 10:956. [PMID: 34064905 PMCID: PMC8151338 DOI: 10.3390/plants10050956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 04/28/2021] [Accepted: 05/06/2021] [Indexed: 11/16/2022]
Abstract
Aegilops columnaris Zhuk. is tetraploid grass species (2n = 4x = 28, UcUcXcXc) closely related to Ae. neglecta and growing in Western Asia and a western part of the Fertile Crescent. Genetic diversity of Ae. columnaris was assessed using C-banding, FISH, nuclear and chloroplast (cp) DNA analyses, and gliadin electrophoresis. Cytogenetically Ae. columnaris was subdivided into two groups, C-I and C-II, showing different karyotype structure, C-banding, and FISH patterns. C-I group was more similar to Ae. neglecta. All types of markers revealed significant heterogeneity in C-II group, although group C-I was also polymorphic. Two chromosomal groups were consistent with plastogroups identified in a current study based on sequencing of three chloroplast intergenic spacer regions. The similarity of group C-I of Ae. columnaris with Ae. neglecta and their distinctness from C-II indicate that divergence of the C-I group was associated with minor genome modifications. Group C-II could emerge from C-I relatively recently, probably due to introgression from another Aegilops species followed by a reorganization of the parental genomes. Most C-II accessions were collected from a very narrow geographic region, and they might originate from a common ancestor. We suggest that the C-II group is at the initial stage of species divergence and undergoing an extensive speciation process.
Collapse
Affiliation(s)
- Ekaterina D. Badaeva
- N. I. Vavilov Institute of General Genetics, Russian Academy of Sciences, Gubkina Street 3, GSP–1, 119991 Moscow, Russia; (A.N.F.); (A.Y.D.)
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova Street 34, GSP–1, 119991 Moscow, Russia;
| | - Nadezhda N. Chikida
- Federal Research Center, N. I. Vavilov All-Russian Institute of Plant Genetic Resources, Bolshaya Morskaya Street 44, 190121 St. Petersburg, Russia; (N.N.C.); (M.K.B.)
| | - Andrey N. Fisenko
- N. I. Vavilov Institute of General Genetics, Russian Academy of Sciences, Gubkina Street 3, GSP–1, 119991 Moscow, Russia; (A.N.F.); (A.Y.D.)
| | - Sergei A. Surzhikov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova Street 34, GSP–1, 119991 Moscow, Russia;
| | - Maria K. Belousova
- Federal Research Center, N. I. Vavilov All-Russian Institute of Plant Genetic Resources, Bolshaya Morskaya Street 44, 190121 St. Petersburg, Russia; (N.N.C.); (M.K.B.)
| | - Hakan Özkan
- Department of Field Crops, Faculty of Agriculture, University of Çukurova, 01330 Adana, Turkey;
| | - Alexandra Y. Dragovich
- N. I. Vavilov Institute of General Genetics, Russian Academy of Sciences, Gubkina Street 3, GSP–1, 119991 Moscow, Russia; (A.N.F.); (A.Y.D.)
| | - Elena Z. Kochieva
- Federal Research Center “Fundamentals of Biotechnology”, Russian Academy of Sciences, 60 let Oktjabrya Prospect 7, Build. 1, 117312 Moscow, Russia;
| |
Collapse
|
8
|
Baranova OA, Sibikeev SN, Druzhin AE. Molecular identification of the stem rust resistance genes in the introgression lines of spring bread wheat. Vavilovskii Zhurnal Genet Selektsii 2019. [DOI: 10.18699/vj19.494] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
A total of 57 introgression lines and 11 cultivars of spring bread wheat developed by All-Russian Institute of Plant Protection and cultivated in the Volga Region were analyzed. The lines were obtained with the participation of CIMMYT synthetics, durum wheat cultivars, direct crossing with Agropyron elongatum (CI-7-57) and have introgressions from related species of bread wheat, namely translocations from Ag. elongatum (7DS-7DL-7Ae#1L), Aegilops speltoides (2D-2S), Ae. ventricosum (2AL-2AS-2MV#1), Secale cereale (1BL-1R#1S), 6Agi (6D) substitution from Ag. intermedium and triticale Satu. Cultivars and lines were assessed for resistance to Saratov, Lysogorsk, Derbent and Omsk stem rust pathogen populations (Puccinia graminis f. sp. tritici), and analyzed for the presence of the known Sr resistance genes using molecular markers. The analysis of the cultivars’ and lines’ resistance to the Saratov pathogen population in the field, as well as to Omsk, Derbent and Lysogorsk populations at the seedling stage, showed the loss of efficiency of the Sr25 and Sr6Agi genes. The Sr31 gene remained effective. Thirty one wheat lines out of 57 (54.4 % of samples) were resistant to all pathogen populations taken into analysis. The Sr31/Lr26, Sr25/Lr19, Sr28, Sr57/Lr34 and Sr38/Lr37 genes were identified in the introgression lines. The Sr31/Lr26 gene was identified in 19 lines (33.3 % of samples). All lines carrying the 1RS.1BL translocation (Sr31/Lr26) were resistant to all pathogen populations taken into analysis. The Sr25/Lr19 gene was identified in 49 lines (86 %). The gene combination Sr31/Lr26+ Sr25/Lr19 was identified in 15 lines (26.3 %). The gene combinations Sr38/Lr37+Sr25/Lr19, Sr57/Lr34+Sr25/Lr19 and Sr31/Lr26+Sr25/Lr19+Sr28 were identified in 3 introgression lines. These three lines were characterized by resistance to the pathogen populations studied in this work. The Sr2, Sr24, Sr26, Sr32, Sr36 and Sr39 genes were not detected in the analyzed wheat lines.
Collapse
Affiliation(s)
| | - S. N. Sibikeev
- Agricultural Research Institute of the South-East Region
| | - A. E. Druzhin
- Agricultural Research Institute of the South-East Region
| |
Collapse
|
9
|
Edet OU, Gorafi YSA, Nasuda S, Tsujimoto H. DArTseq-based analysis of genomic relationships among species of tribe Triticeae. Sci Rep 2018; 8:16397. [PMID: 30401925 PMCID: PMC6219600 DOI: 10.1038/s41598-018-34811-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/26/2018] [Indexed: 11/10/2022] Open
Abstract
Precise utilization of wild genetic resources to improve the resistance of their cultivated relatives to environmental growth limiting factors, such as salinity stress and diseases, requires a clear understanding of their genomic relationships. Although seriously criticized, analyzing these relationships in tribe Triticeae has largely been based on meiotic chromosome pairing in hybrids of wide crosses, a specialized and labourious strategy. In this study, DArTseq, an efficient genotyping-by-sequencing platform, was applied to analyze the genomes of 34 Triticeae species. We reconstructed the phylogenetic relationships among diploid and polyploid Aegilops and Triticum species, including hexaploid wheat. Tentatively, we have identified the diploid genomes that are likely to have been involved in the evolution of five polyploid species of Aegilops, which have remained unresolved for decades. Explanations which cast light on the progenitor of the A genomes and the complex genomic status of the B/G genomes of polyploid Triticum species in the Emmer and Timopheevi lineages of wheat have also been provided. This study has, therefore, demonstrated that DArTseq genotyping can be effectively applied to analyze the genomes of plants, especially where their genome sequence information are not available.
Collapse
Affiliation(s)
- Offiong U Edet
- Arid Land Research Center, Tottori University, Tottori, 680-0001, Japan.,United Graduate School of Agricultural Sciences, Tottori University, Tottori, 680-8553, Japan
| | - Yasir S A Gorafi
- Arid Land Research Center, Tottori University, Tottori, 680-0001, Japan.,Agricultural Research Corporation (ARC), P. O. Box 126, Wad Madani, Sudan
| | - Shuhei Nasuda
- Laboratory of Plant Genetics, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Hisashi Tsujimoto
- Arid Land Research Center, Tottori University, Tottori, 680-0001, Japan.
| |
Collapse
|
10
|
Novoselskaya-Dragovich AY, Yankovskaya AA, Badaeva ED. Alien introgressions and chromosomal rearrangements do not affect the activity of gliadin-coding genes in hybrid lines of Triticum aestivum L. × Aegilops columnaris Zhuk. Vavilovskii Zhurnal Genet Selektsii 2018. [DOI: 10.18699/vj18.388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|