1
|
Wu B, Zhang X, Hu K, Zheng H, Zhang S, Liu X, Ma M, Zhao H. Two alternative splicing variants of a wheat gene TaNAK1, TaNAK1.1 and TaNAK1.2, differentially regulate flowering time and plant architecture leading to differences in seed yield of transgenic Arabidopsis. FRONTIERS IN PLANT SCIENCE 2022; 13:1014176. [PMID: 36531344 PMCID: PMC9751850 DOI: 10.3389/fpls.2022.1014176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
In wheat production, appropriate flowering time and ideal plant architecture are the prerequisites for high grain yield. Alternative splicing (AS) is a vital process that regulates gene expression at the post-transcriptional level, and AS events in wheat have been found to be closely related to grain-related traits and abiotic stress tolerance. However, AS events and their biological roles in regulating flowering time and plant architecture in wheat remain unclear. In this study, we report that TaNAK1 undergoes AS, producing three splicing variants. Molecular characterization of TaNAK1 and its splicing variants demonstrated that all three protein isoforms have a conserved NB-ARC domain and a protein kinase domain, but the positions of these two domains and the length of the protein kinase domains are different among them, implying that they may have different three-dimensional structures and therefore have different functions. Further investigations showed that the two splicing variants of TaNAK1, TaNAK1.1 and TaNAK1.2, exhibited different expression patterns during wheat growth and development, while the other one, TaNAK1.3, was not detected. Subcellular localization demonstrated that TaNAK1.1 was mainly localized in the cytoplasm, while TaNAK1.2 was localized in the nucleus and cytoplasm. Both TaNAK1.1 and TaNAK1.2 exhibit protein kinase activity in vitro. Ectopic expression of TaNAK1.1 and TaNAK1.2 in Arabidopsis demonstrated that these two splicing variants play opposite roles in regulating flowering time and plant architecture, resulting in different seed yields. TaNAK1.2 positive regulates the transition from vegetative to reproductive growth, plant height, branching number, seed size, and seed yield of Arabidopsis, while TaNAK1.1 negatively regulates these traits. Our findings provide new gene resource for regulating flowering time and plant architecture in crop breeding for high grain yield.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Meng Ma
- *Correspondence: Huixian Zhao, ; Meng Ma,
| | | |
Collapse
|
2
|
Li G, Xu D, Huang G, Bi Q, Yang M, Shen H, Liu H. Analysis of Whole-Transcriptome RNA-Seq Data Reveals the Involvement of Alternative Splicing in the Drought Response of Glycyrrhiza uralensis. Front Genet 2022; 13:885651. [PMID: 35656323 PMCID: PMC9152209 DOI: 10.3389/fgene.2022.885651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/22/2022] [Indexed: 12/17/2022] Open
Abstract
Alternative splicing (AS) is a post-transcriptional regulatory mechanism that increases protein diversity. There is growing evidence that AS plays an important role in regulating plant stress responses. However, the mechanism by which AS coordinates with transcriptional regulation to regulate the drought response in Glycyrrhiza uralensis remains unclear. In this study, we performed a genome-wide analysis of AS events in G. uralensis at different time points under drought stress using a high-throughput RNA sequencing approach. We detected 2,479 and 2,764 AS events in the aerial parts (AP) and underground parts (UP), respectively, of drought-stressed G. uralensis. Of these, last exon AS and exon skipping were the main types of AS. Overall, 2,653 genes undergoing significant AS regulation were identified from the AP and UP of G. uralensis exposed to drought for 2, 6, 12, and 24 h. Gene Ontology analyses indicated that AS plays an important role in the regulation of nitrogen and protein metabolism in the drought response of G. uralensis. Notably, the spliceosomal pathway and basal transcription factor pathway were significantly enriched with differentially spliced genes under drought stress. Genes related to splicing regulators in the AP and UP of G. uralensis responded to drought stress and underwent AS under drought conditions. In summary, our data suggest that drought-responsive AS directly and indirectly regulates the drought response of G. uralensis. Further in-depth studies on the functions and mechanisms of AS during abiotic stresses will provide new strategies for improving plant stress resistance.
Collapse
Affiliation(s)
- Guozhi Li
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, College of Life Sciences, Shihezi University, Shihezi, China
| | - Dengxian Xu
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, College of Life Sciences, Shihezi University, Shihezi, China
| | - Gang Huang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, College of Life Sciences, Shihezi University, Shihezi, China
| | - Quan Bi
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, College of Life Sciences, Shihezi University, Shihezi, China
| | - Mao Yang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, College of Life Sciences, Shihezi University, Shihezi, China
| | - Haitao Shen
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, College of Life Sciences, Shihezi University, Shihezi, China
| | - Hailiang Liu
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, College of Life Sciences, Shihezi University, Shihezi, China.,Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Alternative Splicing of TaGS3 Differentially Regulates Grain Weight and Size in Bread Wheat. Int J Mol Sci 2021; 22:ijms222111692. [PMID: 34769129 PMCID: PMC8584009 DOI: 10.3390/ijms222111692] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/24/2021] [Accepted: 10/25/2021] [Indexed: 11/20/2022] Open
Abstract
The heterotrimeric G-protein mediates growth and development by perceiving and transmitting signals in multiple organisms. Alternative splicing (AS), a vital process for regulating gene expression at the post-transcriptional level, plays a significant role in plant adaptation and evolution. Here, we identified five splicing variants of Gγ subunit gene TaGS3 (TaGS3.1 to TaGS3.5), which showed expression divergence during wheat polyploidization, and differential function in grain weight and size determination. TaGS3.1 overexpression significantly reduced grain weight by 5.89% and grain length by 5.04%, while TaGS3.2–3.4 overexpression did not significantly alter grain size compared to wild type. Overexpressing TaGS3.5 significantly increased the grain weight by 5.70% and grain length by 4.30%. Biochemical assays revealed that TaGS3 isoforms (TaGS3.1–3.4) with an intact OSR domain interact with WGB1 to form active Gβγ heterodimers that further interact with WGA1 to form inactive Gαβγ heterotrimers. Truncated isoforms TaGS3.2–3.4 , which lack the C-terminal Cys-rich region but have enhanced binding affinity to WGB1, antagonistically compete with TaGS3.1 to bind WGB1, while TaGS3.5 with an incomplete OSR domain does not interact with WGB1. Taking these observations together, we proposed that TaGS3 differentially regulates grain size via AS, providing a strategy by which the grain size is fine-tuned and regulated at the post-transcriptional level.
Collapse
|
4
|
Luo M, Ding J, Li Y, Tang H, Qi P, Ma J, Wang J, Chen G, Pu Z, Li W, Li Z, Harwood W, Lan X, Deng M, Lu Z, Wei Y, Zheng Y, Jiang Q. A single-base change at a splice site in Wx-A1 caused incorrect RNA splicing and gene inactivation in a wheat EMS mutant line. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:2097-2109. [PMID: 30993362 DOI: 10.1007/s00122-019-03340-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 04/05/2019] [Indexed: 06/09/2023]
Abstract
An EMS-induced single-base mutation at a splice site caused abnormal RNA splicing and resulted in the gene inactivation and the lack of Wx-A1 protein in a wheat EMS mutant line. An EMS-mutagenized population was generated using common wheat cv. SM126 consisting of 10,600 M2 plants. One Wx-A1 null mutant was identified through analyses of 390 grains produced from 130 M2 plants using electrophoresis analyses. The Wx-A1 sequences of parental line SM126 and M2-31 mutant were determined as 2781 bp, and there was only one SNP mutation between them. The SNP was a mutation from G to A at nucleotide sequence position 2168 bp (G2168A) downstream of the start codon which was located at the splicing site within the eighth intron. All 52 cDNA transcripts were found to be incorrectly spliced and can be summarized as five types of variations. The deletion of the exon and the exclusion of intron were structural features in abnormal splicing RNA. Together with the prediction of potential splice regulatory motifs, the mutation G2168A happened within the 5' splice site of the eighth intron and destroyed the splice donor site from GU to AU, which may have brought about a barrier against correct RNA splice, and generated abnormal mRNA, which was the mechanism of the inactivation of Wx-A1 in M2-31. The lack of Wx-A1 has resulted in changes in starch properties in the M2-31 mutant, with the reduction in amylose and starch contents. The increased grains hardness was observed in M2-31, which may be related to the lower expression level of Pinb-D1 gene. As the waxy wheat foods have a lot of advantages, the null waxy genes will be widely applied in breeding waxy wheat for varied amylose contents.
Collapse
Affiliation(s)
- Mi Luo
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Jinjin Ding
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yu Li
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Huaping Tang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Pengfei Qi
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Jian Ma
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Jirui Wang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Guoyue Chen
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Zhien Pu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Wei Li
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Zhongyi Li
- CSIRO Agriculture and Food, Black Mountain, Canberra, ACT, 2601, Australia
| | - Wendy Harwood
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Xiujin Lan
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Mei Deng
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Zhenxiang Lu
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, T1J 4B1, Canada
| | - Yuming Wei
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Youliang Zheng
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Qiantao Jiang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| |
Collapse
|