1
|
Li K, Wang K, Shi Y, Liang F, Li X, Bao S, Yesmagul BM, Fatima M, Yu C, Xu A, Zhang X, Fu S, Shi X, Dun X, Zhou Z, Huang Z. BjuA03.BNT1 plays a positive role in resistance to clubroot disease in resynthesized Brassica juncea L. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 349:112268. [PMID: 39313004 DOI: 10.1016/j.plantsci.2024.112268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 09/25/2024]
Abstract
Clubroot has become a major obstacle in rapeseed production. Breeding varieties resistant to clubroot is the most effective method for disease management. However, the clubroot-resistant germplasm of rapeseed remains limited. To tackle this challenge, we synthesized the clubroot-resistant mustard, CT19, via distant hybridization, and subsequently an F2 segregating population was created by intercrossing CT19 with a clubroot-susceptible germplasm CS15. A major-effect clubroot resistance QTL qCRa3-1 on chromosome A03 was identified through QTL scanning. Transcriptome analyses of CT19 and CS15 revealed that the mechanisms conferring resistance to Plasmodiophora brassica likely involved the regulation of flavonoid metabolism, fatty acid metabolism, and sulfur metabolism. By combining the results from transcriptome, QTL mapping, and gene sequencing, a candidate gene BjuA03.BNT1, encoding NLR (nucleotide-binding domain leucine-rich repeat-containing receptors) protein, was obtained. Intriguingly, comparing with CT19, a base T insertion was discovered in the BjuA03.BNT1 gene's coding sequence in CS15, resulting an alteration within the LRR conserved domain. Overexpression of BjuA03.BNT1 from CT19 notably enhanced the resistance to clubroot in Arabidopsis. Our investigations revealed that BjuA03.BNT1 regulated the resistance to clubroot by modulating fatty acid synthesis and the structure of cell wall. These results are highly relevant for molecular breeding to improve clubroot resistance in rapeseed.
Collapse
Affiliation(s)
- Keqi Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Kai Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yiji Shi
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fenghao Liang
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xinru Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shunjun Bao
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Balziya Maratkyzy Yesmagul
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Maliha Fatima
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chengyu Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Aixia Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xingguo Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Sanxiong Fu
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Xue Shi
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaoling Dun
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China.
| | - Zhaoyong Zhou
- Information Management Office, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Zhen Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
2
|
Adhikary D, Mehta D, Kisiala A, Basu U, Uhrig RG, Emery RN, Rahman H, Kav NNV. Proteome- and metabolome-level changes during early stages of clubroot infection in Brassica napus canola. Mol Omics 2024; 20:265-282. [PMID: 38334713 DOI: 10.1039/d3mo00210a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Clubroot is a destructive root disease of canola (Brassica napus L.) caused by Plasmodiophora brassicae Woronin. Despite extensive research into the molecular responses of B. napus to P. brassicae, there is limited information on proteome- and metabolome-level changes in response to the pathogen, especially during the initial stages of infection. In this study, we have investigated the proteome- and metabolome- level changes in the roots of clubroot-resistant (CR) and -susceptible (CS) doubled-haploid (DH) B. napus lines, in response to P. brassicae pathotype 3H at 1-, 4-, and 7-days post-inoculation (DPI). Root proteomes were analyzed using nanoflow liquid chromatography coupled with tandem mass spectrometry (nano LC-MS/MS). Comparisons of pathogen-inoculated and uninoculated root proteomes revealed 2515 and 1556 differentially abundant proteins at one or more time points (1-, 4-, and 7-DPI) in the CR and CS genotypes, respectively. Several proteins related to primary metabolites (e.g., amino acids, fatty acids, and lipids), secondary metabolites (e.g., glucosinolates), and cell wall reinforcement-related proteins [e.g., laccase, peroxidases, and plant invertase/pectin methylesterase inhibitors (PInv/PMEI)] were identified. Eleven nucleotides and nucleoside-related metabolites, and eight fatty acids and sphingolipid-related metabolites were identified in the metabolomics study. To our knowledge, this is the first report of root proteome-level changes and associated alterations in metabolites during the early stages of P. brassicae infection in B. napus.
Collapse
Affiliation(s)
- Dinesh Adhikary
- Department of Agricultural, Food & Nutritional Sciences, University of Alberta, Edmonton, AB, Canada.
| | - Devang Mehta
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Anna Kisiala
- Biology Department, Trent University, Peterborough, ON, Canada
| | - Urmila Basu
- Department of Agricultural, Food & Nutritional Sciences, University of Alberta, Edmonton, AB, Canada.
| | - R Glen Uhrig
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Rj Neil Emery
- Biology Department, Trent University, Peterborough, ON, Canada
| | - Habibur Rahman
- Department of Agricultural, Food & Nutritional Sciences, University of Alberta, Edmonton, AB, Canada.
| | - Nat N V Kav
- Department of Agricultural, Food & Nutritional Sciences, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
3
|
Karim MM, Yu F. Identification of QTLs for resistance to 10 pathotypes of Plasmodiophora brassicae in Brassica oleracea cultivar ECD11 through genotyping-by-sequencing. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:249. [PMID: 37982891 PMCID: PMC10661809 DOI: 10.1007/s00122-023-04483-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 10/09/2023] [Indexed: 11/21/2023]
Abstract
KEY MESSAGE Two major quantitative trait loci (QTLs) and five minor QTLs for 10 pathotypes were identified on chromosomes C01, C03, C04 and C08 through genotyping-by-sequencing from Brassica oleracea. Clubroot caused by Plasmodiophora brassicae is an important disease in brassica crops. Managing clubroot disease of canola on the Canadian prairie is challenging due to the continuous emergence of new pathotypes. Brassica oleracea is considered a major source of quantitative resistance to clubroot. Genotyping-by-sequencing (GBS) was performed in the parental lines; T010000DH3 (susceptible), ECD11 (resistant) and 124 BC1 plants. A total of 4769 high-quality polymorphic SNP loci were obtained and distributed on 9 chromosomes of B. oleracea. Evaluation of 124 BC1S1 lines for resistance to 10 pathotypes: 3A, 2B, 5C, 3D, 5G, 3H, 8J, 5K, 5L and 3O of P. brassicae, was carried out. Seven QTLs, 5 originating from ECD11 and 2 from T010000DH3, were detected. One major QTL designated as Rcr_C03-1 on C03 contributed 16.0-65.6% of phenotypic variation explained (PVE) for 8 pathotypes: 2B, 5C, 5G, 3H, 8J, 5K, 5L and 3O. Another major QTL designated as Rcr_C08-1 on C08 contributed 8.3 and 23.5% PVE for resistance to 8J and 5K, respectively. Five minor QTLs designated as Rcr_C01-1, Rcr_C03-2, Rcr_C03-3, Rcr_C04-1 and Rcr_C08-2 were detected on chromosomes C01, C03, C04 and C08 that contributed 8.3-23.5% PVE for 5 pathotypes each of 3A, 2B, 3D, 8J and 5K. There were 1, 10 and 4 genes encoding TIR-NBS-LRR/CC-NBS-LRR class disease resistance proteins in the Rcr_C01-1, Rcr_C03-1 and Rcr_C08-1 flanking regions. The syntenic regions of the two major QTLs Rcr_C03-1 and Rcr_C08-1 in the B. rapa genome 'Chiifu' were searched.
Collapse
Affiliation(s)
- Md Masud Karim
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada
| | - Fengqun Yu
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada.
| |
Collapse
|
4
|
Zhu M, Yang L, Zhang Y, Zhuang M, Ji J, Hou X, Li Z, Han F, Fang Z, Lv H, Wang Y. Introgression of clubroot resistant gene into Brassica oleracea L. from Brassica rapa based on homoeologous exchange. HORTICULTURE RESEARCH 2022; 9:uhac195. [PMID: 37180031 PMCID: PMC10167419 DOI: 10.1093/hr/uhac195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 08/26/2022] [Indexed: 05/15/2023]
Abstract
Clubroot is a soil-borne disease in cabbage (Brassica oleracea L. var. capitata L.) caused by Plasmodiophora brassicae, which poses a great threat to cabbage production. However, clubroot resistance (CR) genes in Brassica rapa could be introduced into the cabbage via breeding to make it clubroot resistant. In this study, CR genes from B. rapa were introduced into the cabbage genome and the mechanism of gene introgression was explored. Two methods were used to create CR materials: (i) The fertility of CR Ogura CMS cabbage germplasms containing CRa was restored by using an Ogura CMS restorer. After cytoplasmic replacement and microspore culture, CRa-positive microspore individuals were obtained. (ii) Distant hybridization was performed between cabbage and B. rapa, which contained three CR genes (CRa, CRb, and Pb8.1). Finally, BC2 individuals containing all three CR genes were obtained. Inoculation results showed that both CRa-positive microspore individuals and BC2 individuals containing three CR genes were resistant to race 4 of P. brassicae. Sequencing results from CRa-positive microspore individuals with specific molecular markers and genome-wide association study (GWAS) showed penetration at the homologous position of the cabbage genome by a 3.42 Mb CRa containing a fragment from B. rapa; indicating homoeologous exchange (HE) as the theoretical basis for the introgression of CR resistance. The successful introduction of CR into the cabbage genome in the present study can provide useful clues for creating introgression lines within other species of interest.
Collapse
Affiliation(s)
- Mingzhao Zhu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Institute of Vegetable Science, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Limei Yang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yangyong Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Mu Zhuang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jialei Ji
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xilin Hou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Zhansheng Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fengqing Han
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhiyuan Fang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Honghao Lv
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yong Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
5
|
Shaw RK, Shen Y, Yu H, Sheng X, Wang J, Gu H. Multi-Omics Approaches to Improve Clubroot Resistance in Brassica with a Special Focus on Brassica oleracea L. Int J Mol Sci 2022; 23:9280. [PMID: 36012543 PMCID: PMC9409056 DOI: 10.3390/ijms23169280] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/04/2022] [Accepted: 08/13/2022] [Indexed: 11/17/2022] Open
Abstract
Brassica oleracea is an agronomically important species of the Brassicaceae family, including several nutrient-rich vegetables grown and consumed across the continents. But its sustainability is heavily constrained by a range of destructive pathogens, among which, clubroot disease, caused by a biotrophic protist Plasmodiophora brassicae, has caused significant yield and economic losses worldwide, thereby threatening global food security. To counter the pathogen attack, it demands a better understanding of the complex phenomenon of Brassica-P. brassicae pathosystem at the physiological, biochemical, molecular, and cellular levels. In recent years, multiple omics technologies with high-throughput techniques have emerged as successful in elucidating the responses to biotic and abiotic stresses. In Brassica spp., omics technologies such as genomics, transcriptomics, ncRNAomics, proteomics, and metabolomics are well documented, allowing us to gain insights into the dynamic changes that transpired during host-pathogen interactions at a deeper level. So, it is critical that we must review the recent advances in omics approaches and discuss how the current knowledge in multi-omics technologies has been able to breed high-quality clubroot-resistant B. oleracea. This review highlights the recent advances made in utilizing various omics approaches to understand the host resistance mechanisms adopted by Brassica crops in response to the P. brassicae attack. Finally, we have discussed the bottlenecks and the way forward to overcome the persisting knowledge gaps in delivering solutions to breed clubroot-resistant Brassica crops in a holistic, targeted, and precise way.
Collapse
Affiliation(s)
| | | | | | | | | | - Honghui Gu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
6
|
Mining of Cloned Disease Resistance Gene Homologs (CDRHs) in Brassica Species and Arabidopsis thaliana. BIOLOGY 2022; 11:biology11060821. [PMID: 35741342 PMCID: PMC9220128 DOI: 10.3390/biology11060821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/15/2022] [Accepted: 05/24/2022] [Indexed: 01/23/2023]
Abstract
Simple Summary Developing cultivars with resistance genes (R genes) is an effective strategy to support high yield and quality in Brassica crops. The availability of clone R gene and genomic sequences in Brassica species and Arabidopsis thaliana provide the opportunity to compare genomic regions and survey R genes across genomic databases. In this paper, we aim to identify genes related to cloned genes through sequence identity, providing a repertoire of species-wide related R genes in Brassica crops. The comprehensive list of candidate R genes can be used as a reference for functional analysis. Abstract Various diseases severely affect Brassica crops, leading to significant global yield losses and a reduction in crop quality. In this study, we used the complete protein sequences of 49 cloned resistance genes (R genes) that confer resistance to fungal and bacterial diseases known to impact species in the Brassicaceae family. Homology searches were carried out across Brassica napus, B. rapa, B. oleracea, B. nigra, B. juncea, B. carinata and Arabidopsis thaliana genomes. In total, 660 cloned disease R gene homologs (CDRHs) were identified across the seven species, including 431 resistance gene analogs (RGAs) (248 nucleotide binding site-leucine rich repeats (NLRs), 150 receptor-like protein kinases (RLKs) and 33 receptor-like proteins (RLPs)) and 229 non-RGAs. Based on the position and distribution of specific homologs in each of the species, we observed a total of 87 CDRH clusters composed of 36 NLR, 16 RLK and 3 RLP homogeneous clusters and 32 heterogeneous clusters. The CDRHs detected consistently across the seven species are candidates that can be investigated for broad-spectrum resistance, potentially providing resistance to multiple pathogens. The R genes identified in this study provide a novel resource for the future functional analysis and gene cloning of Brassicaceae R genes towards crop improvement.
Collapse
|
7
|
Lei T, Li N, Ma J, Hui M, Zhao L. Development of molecular markers based on CRa gene sequencing of different clubroot disease-resistant cultivars of Chinese cabbage. Mol Biol Rep 2022; 49:5953-5961. [PMID: 35325358 DOI: 10.1007/s11033-022-07379-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/15/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND CRa is a key gene in Chinese cabbage (Brassica rapa ssp. pekinensis) that confers resistance to Plasmodiophora brassicae. In order to efficiently screen the clubroot resistance (CR) gene CRa in breeding, two functional codominant markers of the CRa gene were developed. METHODS AND RESULTS In this study, through comparing the CRa allele sequences in resistant and susceptible cultivars of Chinese cabbage, we found two insertion and deletion of sequence variations in the fourth exon between resistant and susceptible cultivars. Two functional codominant markers for CRa gene were obtained based on the variations, namely, CRaEX04-1 and CRaEX04-3. The lengths of the extended fragment of CRaEX04-1 marker were 321 bp and 186 bp in resistant and susceptible cultivars, respectively. In contrast, those of CRaEX04-3 were 704 bp and 413 bp, respectively. We verified the genetic stability between the developed markers and CRa gene using 57 Chinese cabbage cultivars with known resistance and two genetic populations. The results showed that the marker identification was completely consistent with the known phenotypes in 57 cultivars. The marker identification results followed the 3:1 of Mendel's first law in the F2 population, and the 1:1 of Mendel's first law in the BC1. CONCLUSIONS CRaEX04-1 and CRaEX04-3 can be used as a practical molecular marker for breeding and germplasm resource creation of clubroot disease-resistant Chinese cabbage.
Collapse
Affiliation(s)
- Ting Lei
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Ning Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Jinjian Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Maixia Hui
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, Shaanxi, China.
| | - Limin Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, 3 Taicheng Road, Yangling, 712100, Shaanxi, China
| |
Collapse
|
8
|
Kopec PM, Mikolajczyk K, Jajor E, Perek A, Nowakowska J, Obermeier C, Chawla HS, Korbas M, Bartkowiak-Broda I, Karlowski WM. Local Duplication of TIR-NBS-LRR Gene Marks Clubroot Resistance in Brassica napus cv. Tosca. FRONTIERS IN PLANT SCIENCE 2021; 12:639631. [PMID: 33936130 PMCID: PMC8082685 DOI: 10.3389/fpls.2021.639631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/09/2021] [Indexed: 06/12/2023]
Abstract
Clubroot, caused by Plasmodiophora brassicae infection, is a disease of growing importance in cruciferous crops, including oilseed rape (Brassica napus). The affected plants exhibit prominent galling of the roots that impairs their capacity for water and nutrient uptake, which leads to growth retardation, wilting, premature ripening, or death. Due to the scarcity of effective means of protection against the pathogen, breeding of resistant varieties remains a crucial component of disease control measures. The key aspect of the breeding process is the identification of genetic factors associated with variable response to the pathogen exposure. Although numerous clubroot resistance loci have been described in Brassica crops, continuous updates on the sources of resistance are necessary. Many of the resistance genes are pathotype-specific, moreover, resistance breakdowns have been reported. In this study, we characterize the clubroot resistance locus in the winter oilseed rape cultivar "Tosca." In a series of greenhouse experiments, we evaluate the disease severity of P. brassicae-challenged "Tosca"-derived population of doubled haploids, which we genotype with Brassica 60 K array and a selection of SSR/SCAR markers. We then construct a genetic map and narrow down the resistance locus to the 0.4 cM fragment on the A03 chromosome, corresponding to the region previously described as Crr3. Using Oxford Nanopore long-read genome resequencing and RNA-seq we review the composition of the locus and describe a duplication of TIR-NBS-LRR gene. Further, we explore the transcriptomic differences of the local genes between the clubroot resistant and susceptible, inoculated and control DH lines. We conclude that the duplicated TNL gene is a promising candidate for the resistance factor. This study provides valuable resources for clubroot resistance breeding programs and lays a foundation for further functional studies on clubroot resistance.
Collapse
Affiliation(s)
- Piotr M. Kopec
- Department of Computational Biology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University Poznan, Poznan, Poland
| | - Katarzyna Mikolajczyk
- Department of Genetics and Breeding of Oilseed Crops, Plant Breeding and Acclimatization Institute-National Research Institute, Poznan, Poland
| | - Ewa Jajor
- Institute of Plant Protection - National Research Institute, Poznan, Poland
| | - Agnieszka Perek
- Institute of Plant Protection - National Research Institute, Poznan, Poland
| | - Joanna Nowakowska
- Department of Genetics and Breeding of Oilseed Crops, Plant Breeding and Acclimatization Institute-National Research Institute, Poznan, Poland
| | - Christian Obermeier
- Department of Plant Breeding, Justus-Liebig-Universitaet Giessen, Giessen, Germany
| | - Harmeet Singh Chawla
- Department of Plant Breeding, Justus-Liebig-Universitaet Giessen, Giessen, Germany
- Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Marek Korbas
- Institute of Plant Protection - National Research Institute, Poznan, Poland
| | - Iwona Bartkowiak-Broda
- Department of Genetics and Breeding of Oilseed Crops, Plant Breeding and Acclimatization Institute-National Research Institute, Poznan, Poland
| | - Wojciech M. Karlowski
- Department of Computational Biology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University Poznan, Poznan, Poland
| |
Collapse
|
9
|
Hasan J, Megha S, Rahman H. Clubroot in Brassica: recent advances in genomics, breeding, and disease management. Genome 2021; 64:735-760. [PMID: 33651640 DOI: 10.1139/gen-2020-0089] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Clubroot disease, caused by Plasmodiophora brassicae, affects Brassica oilseed and vegetable production worldwide. This review is focused on various aspects of clubroot disease and its management, including understanding the pathogen and resistance in the host plants. Advances in genetics, molecular biology techniques, and omics research have helped to identify several major loci, QTL, and genes from the Brassica genomes involved in the control of clubroot resistance. Transcriptomic studies have helped to extend our understanding of the mechanism of infection by the pathogen and the molecular basis of resistance/susceptibility in the host plants. A comprehensive understanding of the clubroot disease and host resistance would allow developing a better strategy by integrating the genetic resistance with cultural practices to manage this disease from a long-term perspective.
Collapse
Affiliation(s)
- Jakir Hasan
- Department of Agricultural, Food and Nutritional Science, 4-10 Agriculture/Forestry Centre, University of Alberta, Edmonton, AB T6G 2P5, Canada.,Department of Agricultural, Food and Nutritional Science, 4-10 Agriculture/Forestry Centre, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Swati Megha
- Department of Agricultural, Food and Nutritional Science, 4-10 Agriculture/Forestry Centre, University of Alberta, Edmonton, AB T6G 2P5, Canada.,Department of Agricultural, Food and Nutritional Science, 4-10 Agriculture/Forestry Centre, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Habibur Rahman
- Department of Agricultural, Food and Nutritional Science, 4-10 Agriculture/Forestry Centre, University of Alberta, Edmonton, AB T6G 2P5, Canada.,Department of Agricultural, Food and Nutritional Science, 4-10 Agriculture/Forestry Centre, University of Alberta, Edmonton, AB T6G 2P5, Canada
| |
Collapse
|
10
|
Liu L, Qin L, Cheng X, Zhang Y, Xu L, Liu F, Tong C, Huang J, Liu S, Wei Y. Comparing the Infection Biology of Plasmodiophora brassicae in Clubroot Susceptible and Resistant Hosts and Non-hosts. Front Microbiol 2020; 11:507036. [PMID: 33178139 PMCID: PMC7596292 DOI: 10.3389/fmicb.2020.507036] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 09/17/2020] [Indexed: 11/13/2022] Open
Abstract
The potential infection biology of Plasmodiophora brassicae in resistant hosts and non-hosts is still not completely understood. Clubroot resistance assay on European clubroot differentials (ECD) set revealed that ECD10 (Brassica napus) and ECD4 (Brassica rapa) show a complete resistance to the tested P. brassicae isolate in contrast to highly susceptible hosts Westar (B. napus) and ECD5 (B. rapa). Previously, we used fluorescent probe-based confocal microscopy (FCM) to refine the life cycle of P. brassicae and indicate the important time points during its infection in Arabidopsis. Here, we used FCM to systematically investigate the infection of P. brassicae in two resistant host species ECD10 and ECD4 and two non-host crops wheat and barley at each indicated time points, compared with two susceptible hosts Westar and ECD5. We found that P. brassicae can initiate the primary infection phase and produce uninucleate primary plasmodia in both resistant hosts and non-hosts just like susceptible hosts at 2 days post-inoculation (dpi). Importantly, P. brassicae can develop into zoosporangia and secondary zoospores and release the secondary zoospores from the zoosporangia in resistant hosts at 7 dpi, comparable to susceptible hosts. However, during the secondary infection phase, no secondary plasmodium was detected in the cortical cells of both resistant hosts in contrast to massive secondary plasmodia present in the cortex tissue of two susceptible hosts leading to root swelling at 15 dpi. In both non-host crops, only uninucleate primary plasmodia were observed throughout roots at 7 and 15 dpi. Quantitative PCR based on DNA revealed that the biomass of P. brassicae has no significant increase from 2 dpi in non-host plants and from 7 dpi in resistant host plants, compared to the huge biomass increase in susceptible host plants from 2 to 25 dpi. Our study reveals that the primary infection phase in the root epidermis and the secondary infection phase in the cortex tissue are, respectively, blocked in non-hosts and resistant hosts, contributing to understanding of cellular and molecular mechanisms underlying clubroot non-host and host resistance.
Collapse
Affiliation(s)
- Lijiang Liu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China.,Department of Biology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Li Qin
- Department of Biology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Xiaohui Cheng
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Yi Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Li Xu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Fan Liu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Chaobo Tong
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Junyan Huang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Shengyi Liu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Yangdou Wei
- Department of Biology, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
11
|
Neik TX, Amas J, Barbetti M, Edwards D, Batley J. Understanding Host-Pathogen Interactions in Brassica napus in the Omics Era. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1336. [PMID: 33050509 PMCID: PMC7599536 DOI: 10.3390/plants9101336] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/02/2020] [Accepted: 10/06/2020] [Indexed: 12/12/2022]
Abstract
Brassica napus (canola/oilseed rape/rapeseed) is an economically important crop, mostly found in temperate and sub-tropical regions, that is cultivated widely for its edible oil. Major diseases of Brassica crops such as Blackleg, Clubroot, Sclerotinia Stem Rot, Downy Mildew, Alternaria Leaf Spot and White Rust have caused significant yield and economic losses in rapeseed-producing countries worldwide, exacerbated by global climate change, and, if not remedied effectively, will threaten global food security. To gain further insights into the host-pathogen interactions in relation to Brassica diseases, it is critical that we review current knowledge in this area and discuss how omics technologies can offer promising results and help to push boundaries in our understanding of the resistance mechanisms. Omics technologies, such as genomics, proteomics, transcriptomics and metabolomics approaches, allow us to understand the host and pathogen, as well as the interaction between the two species at a deeper level. With these integrated data in multi-omics and systems biology, we are able to breed high-quality disease-resistant Brassica crops in a more holistic, targeted and accurate way.
Collapse
Affiliation(s)
- Ting Xiang Neik
- Sunway College Kuala Lumpur, Bandar Sunway 47500, Selangor, Malaysia;
| | - Junrey Amas
- School of Biological Sciences and Institute of Agriculture, The University of Western Australia, Perth 6009, Australia; (J.A.); (D.E.)
| | - Martin Barbetti
- School of Agriculture and Environment and Institute of Agriculture, The University of Western Australia, Perth 6009, Australia;
| | - David Edwards
- School of Biological Sciences and Institute of Agriculture, The University of Western Australia, Perth 6009, Australia; (J.A.); (D.E.)
| | - Jacqueline Batley
- School of Biological Sciences and Institute of Agriculture, The University of Western Australia, Perth 6009, Australia; (J.A.); (D.E.)
| |
Collapse
|
12
|
Ton LB, Neik TX, Batley J. The Use of Genetic and Gene Technologies in Shaping Modern Rapeseed Cultivars ( Brassica napus L.). Genes (Basel) 2020; 11:E1161. [PMID: 33008008 PMCID: PMC7600269 DOI: 10.3390/genes11101161] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/27/2020] [Accepted: 09/27/2020] [Indexed: 12/20/2022] Open
Abstract
Since their domestication, Brassica oilseed species have undergone progressive transformation allied with the development of breeding and molecular technologies. The canola (Brassica napus) crop has rapidly expanded globally in the last 30 years with intensive innovations in canola varieties, providing for a wider range of markets apart from the food industry. The breeding efforts of B. napus, the main source of canola oil and canola meal, have been mainly focused on improving seed yield, oil quality, and meal quality along with disease resistance, abiotic stress tolerance, and herbicide resistance. The revolution in genetics and gene technologies, including genetic mapping, molecular markers, genomic tools, and gene technology, especially gene editing tools, has allowed an understanding of the complex genetic makeup and gene functions in the major bioprocesses of the Brassicales, especially Brassica oil crops. Here, we provide an overview on the contributions of these technologies in improving the major traits of B. napus and discuss their potential use to accomplish new improvement targets.
Collapse
Affiliation(s)
- Linh Bao Ton
- School of Biological Science, The University of Western Australia, Perth, WA 6009, Australia;
| | - Ting Xiang Neik
- Sunway College Kuala Lumpur, No. 2, Jalan Universiti, Bandar Sunway, Selangor 47500, Malaysia;
| | - Jacqueline Batley
- School of Biological Science, The University of Western Australia, Perth, WA 6009, Australia;
| |
Collapse
|