1
|
Wu K, Qi S, Wang Z. Visual Detection of Chlorpyrifos by DNA Hydrogel-Based Self-Actuated Capillary Aptasensor Using Nicking Enzyme-Mediated Amplification. ACS Sens 2025; 10:1889-1897. [PMID: 40068121 DOI: 10.1021/acssensors.4c02997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
The abuse of chlorpyrifos (CPF), an organophosphorus pesticide, poses significant health risks to humans. Therefore, rapid and accurate detection of residual CPF is crucial to human health due to its high risk in trace amounts. Herein, we developed a simple aptasensor that combines a DNA hydrogel-based self-driven capillary with nicking enzyme-mediated amplification (NEMA), in which the NEMA is triggered through the interaction of the aptamer with CPF, and then amplified to produce a large number of single-stranded DNA that can destroy the three-dimensional structure of the DNA hydrogel. Due to the different degrees of collapse of the hydrogel membrane structure, different amounts of liquid are adsorbed into the capillary under the action of surface tension, thus realizing the naked eye detection of CPF. Under optimal conditions, the DNA hydrogel-based self-actuated capillary aptasensor can sensitively detect chlorpyrifos in the concentration range of 1 ng/L to 1 mg/L, with a detection limit of 1.73 pg/L. The advantages of the aptasensor are simple conditions, high sensitivity, and a large detection concentration range, and only a thermostat and simple operation are needed to achieve its excellent analytical performance. In addition, the developed self-actuated capillary aptasensor was successfully applied for the determination of CPF in apple, grape, cabbage, and peanut kernel.
Collapse
Affiliation(s)
- Kaiqing Wu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Shuo Qi
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
2
|
Drouin R, Bastien N, Millau JF, Vigneault F, Paradis I. In Cellulo DNA Analysis: LMPCR Footprinting. Methods Mol Biol 2016; 1334:41-84. [PMID: 26404143 DOI: 10.1007/978-1-4939-2877-4_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The in cellulo analysis of protein-DNA interactions and chromatin structure is very important to better understand the mechanisms involved in the regulation of gene expression. The nuclease-hypersensitive sites and sequences bound by transcription factors often correspond to genetic regulatory elements. Using the ligation-mediated polymerase chain reaction (LMPCR) technology, it is possible to precisely analyze these DNA sequences to demonstrate the existence of DNA-protein interactions or unusual DNA structures directly in living cells. Indeed, the ideal chromatin substrate is, of course, found inside intact cells. LMPCR, a genomic sequencing technique that map DNA single-strand breaks at the sequence level of resolution, is the method of choice for in cellulo footprinting and DNA structure studies because it can be used to investigate complex animal genomes, including human. The detailed conventional and automated LMPCR protocols are presented in this chapter.
Collapse
Affiliation(s)
- Régen Drouin
- Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada. .,Division of Genetics, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001 12th Avenue North, Sherbrooke, QC, Canada, J1H 5N4.
| | - Nathalie Bastien
- Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Jean-François Millau
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | - Isabelle Paradis
- Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
3
|
Brancato B, Munnia A, Cellai F, Ceni E, Mello T, Bianchi S, Catarzi S, Risso GG, Galli A, Peluso MEM. 8-Oxo-7,8-dihydro-2'-deoxyguanosine and other lesions along the coding strand of the exon 5 of the tumour suppressor gene P53 in a breast cancer case-control study. DNA Res 2016; 23:395-402. [PMID: 27260513 PMCID: PMC4991831 DOI: 10.1093/dnares/dsw018] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 04/14/2016] [Indexed: 01/13/2023] Open
Abstract
The next-generation sequencing studies of breast cancer have reported that the tumour suppressor P53 (TP53) gene is mutated in more than 40% of the tumours. We studied the levels of oxidative lesions, including 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), along the coding strand of the exon 5 in breast cancer patients as well as in a reactive oxygen species (ROS)-attacked breast cancer cell line using the ligation-mediated polymerase chain reaction technique. We detected a significant 'in vitro' generation of 8-oxodG between the codons 163 and 175, corresponding to a TP53 region with high mutation prevalence, after treatment with xanthine plus xanthine oxidase, a ROS-generating system. Then, we evaluated the occurrence of oxidative lesions in the DNA-binding domain of the TP53 in the core needle biopsies of 113 of women undergoing breast investigation for diagnostic purpose. An increment of oxidative damage at the -G- residues into the codons 163 and 175 was found in the cancer cases as compared to the controls. We found significant associations with the pathological stage and the histological grade of tumours. As the major news of this study, this largest analysis of genomic footprinting of oxidative lesions at the TP53 sequence level to date provided a first roadmap describing the signatures of oxidative lesions in human breast cancer. Our results provide evidence that the generation of oxidative lesions at single nucleotide resolution is not an event highly stochastic, but causes a characteristic pattern of DNA lesions at the site of mutations in the TP53, suggesting causal relationship between oxidative DNA adducts and breast cancer.
Collapse
Affiliation(s)
- Beniamino Brancato
- Senology Unit, ISPO-Cancer Prevention and Research Institute, 50139 - Florence, Italy
| | - Armelle Munnia
- Cancer Risk Factor Branch, Cancer Prevention Laboratory, ISPO-Cancer Prevention and Research Institute, 50139 Florence, Italy
| | - Filippo Cellai
- Cancer Risk Factor Branch, Cancer Prevention Laboratory, ISPO-Cancer Prevention and Research Institute, 50139 Florence, Italy
| | - Elisabetta Ceni
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50139 - Florence, Italy
| | - Tommaso Mello
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50139 - Florence, Italy
| | - Simonetta Bianchi
- Pathological Anatomy Unit, Department of Surgery and Translational Medicine, University of Florence - Careggi University Hospital, 50139 - Florence, Italy
| | - Sandra Catarzi
- Senology Unit, ISPO-Cancer Prevention and Research Institute, 50139 - Florence, Italy
| | - Gabriella G Risso
- Senology Unit, ISPO-Cancer Prevention and Research Institute, 50139 - Florence, Italy
| | - Andrea Galli
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50139 - Florence, Italy
| | - Marco E M Peluso
- Cancer Risk Factor Branch, Cancer Prevention Laboratory, ISPO-Cancer Prevention and Research Institute, 50139 Florence, Italy
| |
Collapse
|
4
|
Terpe K. Overview of thermostable DNA polymerases for classical PCR applications: from molecular and biochemical fundamentals to commercial systems. Appl Microbiol Biotechnol 2013; 97:10243-54. [DOI: 10.1007/s00253-013-5290-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 09/20/2013] [Accepted: 09/22/2013] [Indexed: 11/29/2022]
|
5
|
Reis AMC, Mills WK, Ramachandran I, Friedberg EC, Thompson D, Queimado L. Targeted detection of in vivo endogenous DNA base damage reveals preferential base excision repair in the transcribed strand. Nucleic Acids Res 2011; 40:206-19. [PMID: 21911361 PMCID: PMC3245927 DOI: 10.1093/nar/gkr704] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Endogenous DNA damage is removed mainly via base excision repair (BER), however, whether there is preferential strand repair of endogenous DNA damage is still under intense debate. We developed a highly sensitive primer-anchored DNA damage detection assay (PADDA) to map and quantify in vivo endogenous DNA damage. Using PADDA, we documented significantly higher levels of endogenous damage in Saccharomyces cerevisiae cells in stationary phase than in exponential phase. We also documented that yeast BER-defective cells have significantly higher levels of endogenous DNA damage than isogenic wild-type cells at any phase of growth. PADDA provided detailed fingerprint analysis at the single-nucleotide level, documenting for the first time that persistent endogenous nucleotide damage in CAN1 co-localizes with previously reported spontaneous CAN1 mutations. To quickly and reliably quantify endogenous strand-specific DNA damage in the constitutively expressed CAN1 gene, we used PADDA on a real-time PCR setting. We demonstrate that wild-type cells repair endogenous damage preferentially on the CAN1 transcribed strand. In contrast, yeast BER-defective cells accumulate endogenous damage preferentially on the CAN1 transcribed strand. These data provide the first direct evidence for preferential strand repair of endogenous DNA damage and documents the major role of BER in this process.
Collapse
Affiliation(s)
- António M C Reis
- Department of Dermatology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | | | | | | | | | | |
Collapse
|
6
|
DMSO and betaine greatly improve amplification of GC-rich constructs in de novo synthesis. PLoS One 2010; 5:e11024. [PMID: 20552011 PMCID: PMC2883997 DOI: 10.1371/journal.pone.0011024] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Accepted: 05/16/2010] [Indexed: 01/10/2023] Open
Abstract
In Synthetic Biology, de novo synthesis of GC-rich constructs poses a major challenge because of secondary structure formation and mispriming. While there are many web-based tools for codon optimizing difficult regions, no method currently exists that allows for potentially phenotypically important sequence conservation. Therefore, to overcome these limitations in researching GC-rich genes and their non-coding elements, we explored the use of DMSO and betaine in two conventional methods of assembly and amplification. For this study, we compared the polymerase (PCA) and ligase-based (LCR) methods for construction of two GC-rich gene fragments implicated in tumorigenesis, IGF2R and BRAF. Though we found no benefit in employing either DMSO or betaine during the assembly steps, both additives greatly improved target product specificity and yield during PCR amplification. Of the methods tested, LCR assembly proved far superior to PCA, generating a much more stable template to amplify from. We further report that DMSO and betaine are highly compatible with all other reaction components of gene synthesis and do not require any additional protocol modifications. Furthermore, we believe either additive will allow for the production of a wide variety of GC-rich gene constructs without the need for expensive and time-consuming sample extraction and purification prior to downstream application.
Collapse
|
7
|
Drouin R, Bastien N, Millau JF, Vigneault F, Paradis I. In cellulo DNA analysis (LMPCR footprinting). Methods Mol Biol 2009; 543:293-336. [PMID: 19378174 DOI: 10.1007/978-1-60327-015-1_20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The in cellulo analysis of DNA protein interactions and chromatin structure is very important to better understand the mechanisms involved in the regulation of gene expression. The nuclease-hypersensitive sites and sequences bound by transcription factors often correspond to genetic regulatory elements. Using the Ligation-mediated polymerase chain reaction (LMPCR) technology, it is possible to precisely analyze these DNA sequences to demonstrate the existence of DNA-protein interactions or unusual DNA structures directly in living cells. Indeed, the ideal chromatin substrate is, of course, found inside intact cells. LMPCR, a genomic-sequencing, technique that map DNA single-strand breaks at the sequence level of resolution, is the method of choice for in cellulo footprinting and DNA structure studies because it can be used to investigate any complex genomes, including human. The detailed conventional and automated LMPCR protocols are presented in this chapter.
Collapse
Affiliation(s)
- Régen Drouin
- Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12th Avenue North, Sherbrooke, QC, Canada J1H 5N4
| | | | | | | | | |
Collapse
|
8
|
Orsini L, Pajunen M, Hanski I, Savilahti H. SNP discovery by mismatch-targeting of Mu transposition. Nucleic Acids Res 2007; 35:e44. [PMID: 17311815 PMCID: PMC1874615 DOI: 10.1093/nar/gkm070] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Single nucleotide polymorphisms (SNPs) represent a valuable resource for the mapping of human disease genes and induced mutations in model organisms. SNPs may become the markers of choice also for population ecology and evolutionary studies, but their isolation for non-model organisms with unsequenced genomes is often difficult. Here, we describe a rapid and cost-effective strategy to isolate SNPs that exploits the property of the bacteriophage Mu transposition machinery to target mismatched DNA sites and thereby to effectively detect polymorphic loci. To demonstrate the methodology, we isolated 164 SNPs from the unsequenced genome of the Glanville fritillary butterfly (Melitaea cinxia), a much-studied species in population biology, and we validated 24 of them. The strategy involves standard molecular biology techniques as well as undemanding MuA transposase-catalyzed in vitro transposition reactions, and it is applicable to any organism.
Collapse
Affiliation(s)
- Luisa Orsini
- Metapopulation Research Group, Department of Biological and Environmental Sciences, PO Box 65, and Research Program in Cellular Biotechnology, Institute of Biotechnology, PO Box 56, FIN-00014, University of Helsinki, Finland and Division of Genetics and Physiology, Department of Biology, FIN-20014, University of Turku, Finland
| | - Maria Pajunen
- Metapopulation Research Group, Department of Biological and Environmental Sciences, PO Box 65, and Research Program in Cellular Biotechnology, Institute of Biotechnology, PO Box 56, FIN-00014, University of Helsinki, Finland and Division of Genetics and Physiology, Department of Biology, FIN-20014, University of Turku, Finland
| | - Ilkka Hanski
- Metapopulation Research Group, Department of Biological and Environmental Sciences, PO Box 65, and Research Program in Cellular Biotechnology, Institute of Biotechnology, PO Box 56, FIN-00014, University of Helsinki, Finland and Division of Genetics and Physiology, Department of Biology, FIN-20014, University of Turku, Finland
| | - Harri Savilahti
- Metapopulation Research Group, Department of Biological and Environmental Sciences, PO Box 65, and Research Program in Cellular Biotechnology, Institute of Biotechnology, PO Box 56, FIN-00014, University of Helsinki, Finland and Division of Genetics and Physiology, Department of Biology, FIN-20014, University of Turku, Finland
- *To whom correspondence should be addressed. +358 9 191 59516+358 9 191 59366
| |
Collapse
|