1
|
Tolić A, Ravichandran M, Rajić J, Đorđević M, Đorđević M, Dinić S, Grdović N, Jovanović JA, Mihailović M, Nestorović N, Jurkowski TP, Uskoković AS, Vidaković MS. TET-mediated DNA hydroxymethylation is negatively influenced by the PARP-dependent PARylation. Epigenetics Chromatin 2022; 15:11. [PMID: 35382873 PMCID: PMC8985375 DOI: 10.1186/s13072-022-00445-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/19/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Poly(ADP-ribosyl)ation (PARylation), a posttranslational modification introduced by PARP-1 and PARP-2, has first been implicated in DNA demethylation due to its role in base excision repair. Recent evidence indicates a direct influence of PARP-dependent PARylation on TET enzymes which catalyse hydroxymethylation of DNA-the first step in DNA demethylation. However, the exact nature of influence that PARylation exerts on TET activity is still ambiguous. In our recent study, we have observed a negative influence of PARP-1 on local TET-mediated DNA demethylation of a single gene and in this study, we further explore PARP-TET interplay. RESULTS Expanding on our previous work, we show that both TET1 and TET2 can be in vitro PARylated by PARP-1 and PARP-2 enzymes and that TET1 PARylation negatively affects the TET1 catalytic activity in vitro. Furthermore, we show that PARylation inhibits TET-mediated DNA demethylation at the global genome level in cellulo. CONCLUSIONS According to our findings, PARP inhibition can positively influence TET activity and therefore affect global levels of DNA methylation and hydroxymethylation. This gives a strong rationale for future examination of PARP inhibitors' potential use in the therapy of cancers characterised by loss of 5-hydroxymethylcytosine.
Collapse
Affiliation(s)
- Anja Tolić
- Department of Molecular Biology, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060, Belgrade, Serbia
| | - Mirunalini Ravichandran
- Institute of Biochemistry, University of Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany.,Department of Anatomy, University of California, San Francisco, 513 Parnassus Avenue, HSW 1301, San Francisco, CA, 94143, USA
| | - Jovana Rajić
- Department of Molecular Biology, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060, Belgrade, Serbia
| | - Marija Đorđević
- Department of Molecular Biology, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060, Belgrade, Serbia
| | - Miloš Đorđević
- Department of Molecular Biology, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060, Belgrade, Serbia
| | - Svetlana Dinić
- Department of Molecular Biology, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060, Belgrade, Serbia
| | - Nevena Grdović
- Department of Molecular Biology, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060, Belgrade, Serbia
| | - Jelena Arambašić Jovanović
- Department of Molecular Biology, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060, Belgrade, Serbia
| | - Mirjana Mihailović
- Department of Molecular Biology, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060, Belgrade, Serbia
| | - Nataša Nestorović
- Department of Cytology, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060, Belgrade, Serbia
| | - Tomasz P Jurkowski
- Institute of Biochemistry, University of Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany. .,School of Biosciences, Cardiff University, Cardiff, Wales, Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AX, UK.
| | - Aleksandra S Uskoković
- Department of Molecular Biology, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060, Belgrade, Serbia.
| | - Melita S Vidaković
- Department of Molecular Biology, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060, Belgrade, Serbia.
| |
Collapse
|
2
|
Tsikarishvili S, Karapetian M, Kulikova N, Zaalishvili G. PARP inhibition suppresses topoisomerase 1 poisoning induced Caspase-3 dependent cell death in zebrafish embryos. Biochem Biophys Res Commun 2021; 550:166-170. [PMID: 33706100 DOI: 10.1016/j.bbrc.2021.03.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 03/01/2021] [Indexed: 01/11/2023]
Abstract
In the present study the role of poly(ADP)ribosylation on rubitecan induced caspase dependent cell death was evaluated. We show that Top1 poisoning by rubitecan induces caspase mediated apoptosis which was reduced by PARP inhibitor olaparib in zebrafish embryo. Collectively our data introduces zebrafish as a valuable model for PARP related biomedical research.
Collapse
Affiliation(s)
- Sophiko Tsikarishvili
- Chromatin Biology Laboratory, Institute of Cellular and Molecular Biology, Agricultural University of Georgia, Kakha Bendukidze Campus, 240 David Aghmashenebeli Alley, 0131, Tbilisi, Georgia
| | - Margarita Karapetian
- Chromatin Biology Laboratory, Institute of Cellular and Molecular Biology, Agricultural University of Georgia, Kakha Bendukidze Campus, 240 David Aghmashenebeli Alley, 0131, Tbilisi, Georgia
| | - Nina Kulikova
- Cellular Immunology Laboratory, Institute of Cellular and Molecular Biology, Agricultural University of Georgia, Kakha Bendukidze Campus, 240 David Aghmashenebeli Alley, 0131, Tbilisi, Georgia
| | - Giorgi Zaalishvili
- Chromatin Biology Laboratory, Institute of Cellular and Molecular Biology, Agricultural University of Georgia, Kakha Bendukidze Campus, 240 David Aghmashenebeli Alley, 0131, Tbilisi, Georgia.
| |
Collapse
|
3
|
Sadeghi S, Tapak M, Ghazanfari T, Mosaffa N. A review of Sulfur Mustard-induced pulmonary immunopathology: An Alveolar Macrophage Approach. Toxicol Lett 2020; 333:115-129. [PMID: 32758513 DOI: 10.1016/j.toxlet.2020.07.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 12/27/2022]
Abstract
Despite many studies investigating the mechanism of Sulfur Mustard (SM) induced lung injury, the underlying mechanism is still unclear. Inflammatory and subsequent fibroproliferative stages of SM-toxicity are based upon several highly-related series of events controlled by the immune system. The inhalation of SM gas variably affects different cell populations within the lungs. Various studies have shown the critical role of macrophages in triggering a pulmonary inflammatory response as well as its maintenance, resolution, and repair. Importantly, macrophages can serve as either pro-inflammatory or anti-inflammatory populations depending on the present conditions at any pathological stage. Different characteristics of macrophages, including their differentiation, phenotypic, and functional properties, as well as interactions with other cell populations determine the outcomes of lung diseases and the extent of long- or short-term pulmonary damage induced by SM. In this paper, we summarize the current state of knowledge regarding the role of alveolar macrophages and their mediators in the pathogenesis of SM in pulmonary injury. Investigating the specific cells and mechanisms involved in SM-lung injury may be useful in finding new target opportunities for treatment of this injury.
Collapse
Affiliation(s)
- Somaye Sadeghi
- Student Research Committee, Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahtab Tapak
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tooba Ghazanfari
- Immunoregulation Research Center, Shahed University, Tehran, Iran; Department of Immunology, Shahed University, Tehran, Iran.
| | - Nariman Mosaffa
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Karapetian M, Tsikarishvili S, Kulikova N, Kurdadze A, Zaalishvili G. Genotoxic effects of topoisomerase poisoning and PARP inhibition on zebrafish embryos. DNA Repair (Amst) 2020; 87:102772. [DOI: 10.1016/j.dnarep.2019.102772] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/28/2019] [Accepted: 12/17/2019] [Indexed: 10/25/2022]
|
5
|
The hidden side of SERPINB1/Leukocyte Elastase Inhibitor. Semin Cell Dev Biol 2016; 62:178-186. [PMID: 27422329 DOI: 10.1016/j.semcdb.2016.07.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 06/13/2016] [Accepted: 07/08/2016] [Indexed: 12/20/2022]
Abstract
SERPINB1, also called Leukocyte Elastase Inhibitor (LEI) is a member of the clade B of SERPINS. It is an intracellular protein and acts primarily to protect the cell from proteases released into the cytoplasm during stress. Its role in inflammation is clear due to its involvement in the resolution of chronic inflammatory lung and bowel diseases. LEI/SERPINB1 intrinsically possesses two enzymatic activities: an antiprotease activity dependent on its reactive site loop, which is analogous to the other proteins of the family and an endonuclease activity which is unveiled by the cleavage of the reactive site loop. The conformational change induced by this cleavage also unveils a bipartite nuclear localization signal allowing the protein to translocate to the nucleus. Recent data indicate that it has also a role in cell migration suggesting that it could be involved in diverse processes like wound healing and malignant metastases.
Collapse
|
6
|
Zhou ZD, Chan CHS, Xiao ZC, Tan EK. Ring finger protein 146/Iduna is a poly(ADP-ribose) polymer binding and PARsylation dependent E3 ubiquitin ligase. Cell Adh Migr 2012; 5:463-71. [PMID: 22274711 DOI: 10.4161/cam.5.6.18356] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Recent findings suggest that Ring finger protein 146 (RNF146), also called iduna, have neuroprotective property due to its inhibition of Parthanatos via binding with Poly(ADP-ribose) (PAR). The Parthanatos is a PAR dependent cell death that has been implicated in many human diseases. RNF146/Iduna acts as a PARsylation-directed E3 ubquitin ligase to mediate tankyrase-dependent degradation of axin, thereby positively regulates Wnt signaling. RNF146/Iduna can also facilitate DNA repair and protect against cell death induced by DNA damaging agents or γ-irradiation. It can translocate to the nucleus after cellular injury and promote the ubiquitination and degradation of various nuclear proteins involved in DNA damage repair. The PARsylation-directed ubquitination mediated by RNF146/Iduna is analogous to the phosphorylation-directed ubquitination catalyzed by Skp1-Cul1-F-box (SCF) E3 ubiquitin complex. RNF146/Iduna has been found to be implicated in neurodegenerative disease and cancer development. Therefore modulation of the PAR-binding and PARsylation dependent E3 ligase activity of RNF146/Iduna could have therapeutic significance for diseases, in which PAR and PAR-binding proteins play key pathophysiologic roles.
Collapse
|
7
|
Ghabili K, Agutter PS, Ghanei M, Ansarin K, Panahi Y, Shoja MM. Sulfur mustard toxicity: history, chemistry, pharmacokinetics, and pharmacodynamics. Crit Rev Toxicol 2011; 41:384-403. [PMID: 21329486 DOI: 10.3109/10408444.2010.541224] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Sulfur mustard (SM) and similar bifunctional agents have been used as chemical weapons for almost 100 years. Victims of high-dose exposure, both combatants and civilians, may die within hours or weeks, but low-dose exposure causes both acute injury to the eyes, skin, respiratory tract and other parts of the body, and chronic sequelae in these organs are often debilitating and have a serious impact on quality of life. Ever since they were first used in warfare in 1917, SM and other mustard agents have been the subjects of intensive research, and their chemistry, pharmacokinetics and mechanisms of toxic action are now fairly well understood. In the present article we review this knowledge and relate the molecular-biological basis of SM toxicity, as far as it has been elucidated, to the pathological effects on exposure victims.
Collapse
Affiliation(s)
- Kamyar Ghabili
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | | | | | | |
Collapse
|
8
|
Belizna C, Henrion D, Beucher A, Lavigne C, Ghaali A, Lévesque H. Anti-Ku antibodies: Clinical, genetic and diagnostic insights. Autoimmun Rev 2010; 9:691-4. [DOI: 10.1016/j.autrev.2010.05.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2010] [Accepted: 05/26/2010] [Indexed: 10/19/2022]
|
9
|
Leprêtre C, Scovassi AI, Shah GM, Torriglia A. Regulation of poly(ADP-ribose) polymerase-1 functions by leukocyte elastase inhibitor/LEI-derived DNase II during caspase-independent apoptosis. Int J Biochem Cell Biol 2008; 41:1046-54. [PMID: 18951996 DOI: 10.1016/j.biocel.2008.09.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Revised: 09/24/2008] [Accepted: 09/24/2008] [Indexed: 01/29/2023]
Abstract
Poly(ADP-ribose) polymerase-1 (PARP-1) is an important regulator of apoptosis. Its over-activation at the onset of apoptosis can inhibit the action of apoptotic endonucleases like caspase-activated DNase and DNAS1L3. Therefore, controlled PARP-1 proteolysis during caspase-dependent apoptosis is considered essential to promote DNA degradation. Yet, little is known about the interplay of PARP-1 and endonucleases that operate during caspase-independent cell death. Here we show that in the long-term cultured HeLa cells which undergo caspase-independent death, PARP-1 co-immunoprecipitates with leukocyte elastase inhibitor-derived DNase II (L-DNase II), an acid DNase implicated in this death pathway and activated by serine proteases. Our results indicate that, despite having putative poly(ADP-ribose)-acceptor sites, LEI/L-DNase II is neither significantly poly(ADP-ribosyl)ated nor inhibited by PARP-1 during caspase-independent apoptosis. Unexpectedly, caspase-independent apoptosis induced by hexa-methylene amiloride, LEI/L-DNase II can activate PARP-1 and promote its auto-poly(ADP-ribosyl)ation, thus inhibiting PARP-1 activity. Moreover, overexpression of LEI blocks the pro-survival effect of PARP-1 in this model of cell death. Our results provide the original evidence for a new mechanism of PARP-1 activity regulation in the caspase-independent death pathway involving LEI/L-DNase II.
Collapse
Affiliation(s)
- C Leprêtre
- Université Pierre et Marie Curie-Paris 6, France; Université Paris Descartes-Paris 5, France.
| | | | | | | |
Collapse
|
10
|
Beneke S, Cohausz O, Malanga M, Boukamp P, Althaus F, Bürkle A. Rapid regulation of telomere length is mediated by poly(ADP-ribose) polymerase-1. Nucleic Acids Res 2008; 36:6309-17. [PMID: 18835851 PMCID: PMC2577345 DOI: 10.1093/nar/gkn615] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Shelterin/telosome is a multi-protein complex at mammalian telomeres, anchored to the double-stranded region by the telomeric-repeat binding factors-1 and -2. In vitro modification of these proteins by poly(ADP-ribosyl)ation through poly(ADP-ribose) polymerases-5 (tankyrases) and -1/-2, respectively, impairs binding. Thereafter, at least telomeric-repeat binding factor-1 is degraded by the proteasome. We show that pharmacological inhibition of poly(ADP-ribose) polymerase activity in cells from two different species leads to rapid decrease in median telomere length and stabilization at a lower setting. Specific knockdown of poly(ADP-ribose) polymerase-1 by RNA interference had the same effect. The length of the single-stranded telomeric overhang as well as telomerase activity were not affected. Release of inhibition led to a fast re-gain in telomere length to control levels in cells expressing active telomerase. We conclude that poly(ADP-ribose) polymerase-1 activity and probably its interplay with telomeric-repeat binding factor-2 is an important determinant in telomere regulation. Our findings reinforce the link between poly(ADP-ribosyl)ation and aging/longevity and also impact on the use of poly(ADP-ribose) polymerase inhibitors in tumor therapy.
Collapse
Affiliation(s)
- Sascha Beneke
- Molecular Toxicology Group, Department of Biology, University of Konstanz, 78457 Konstanz, Germany.
| | | | | | | | | | | |
Collapse
|
11
|
Dobretsova A, Johnson JW, Jones RC, Edmondson RD, Wight PA. Proteomic analysis of nuclear factors binding to an intronic enhancer in the myelin proteolipid protein gene. J Neurochem 2008; 105:1979-95. [PMID: 18266931 DOI: 10.1111/j.1471-4159.2008.05288.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The myelin proteolipid protein gene (Plp1) encodes the most abundant protein found in CNS myelin, accounting for nearly one-half of the total protein. Its expression in oligodendrocytes is developmentally regulated - peaking during the active myelination period of CNS development. Previously, we have identified a novel enhancer (designated ASE) in intron 1 DNA that appears to be important in mediating the surge of Plp1 gene activity during the active myelination period. Evidence suggests that the ASE participates in the formation of a specialized multi-protein/DNA complex called an enhanceosome. The current study describes an optimized, five-step, DNA affinity chromatography purification procedure to purify nuclear proteins from mouse brain that bind to the 85-bp ASE sequence, specifically. Electrophoretic mobility shift assay analysis demonstrated that specific DNA-binding activity was retained throughout the purification procedure, resulting in concomitant enrichment of nucleoprotein complexes. Identification of the purported regulatory factors was achieved through mass spectrometry analysis and included over 20 sequence-specific DNA-binding proteins. Supplementary western blot analyses to determine which of these sequence-specific factors are present in oligodendrocytes, and their developmental and regional expression in whole brain, suggest that Puralpha and Purbeta rank highest among the candidate factors as constituents of the multi-protein complex formed on the ASE.
Collapse
Affiliation(s)
- Anna Dobretsova
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| | | | | | | | | |
Collapse
|
12
|
Gluch A, Vidakovic M, Bode J. Scaffold/matrix attachment regions (S/MARs): relevance for disease and therapy. Handb Exp Pharmacol 2008:67-103. [PMID: 18491049 DOI: 10.1007/978-3-540-72843-6_4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
There is increasing awareness that processes, such as development, aging and cancer, are governed, to a considerable extent, by epigenetic processes, such as DNA and histone modifications. The sites of these modifications in turn reflect their position and role in the nuclear architecture. Since epigenetic changes are easier to reverse than mutations, drugs that remove or add the chemical tags are at the forefront of research for the treatment of cancerous and inflammatory diseases. This review will use selected examples to develop a unified view that might assist the systematic development of novel therapeutic regimens.
Collapse
Affiliation(s)
- A Gluch
- Helmholtz-Zentrum für Infektionsforschung MBIO/Epigenetic Regulation, Inhoffenstrasse 7, Braunschweig, Germany
| | | | | |
Collapse
|
13
|
Foresti M, Avallone B. Only complete rejoining of DNA strand breaks after UVC allows K562 cell proliferation and DMSO induction of erythropoiesis. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2007; 90:8-16. [PMID: 18032060 DOI: 10.1016/j.jphotobiol.2007.05.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2006] [Revised: 05/10/2007] [Accepted: 05/17/2007] [Indexed: 11/30/2022]
Abstract
DNA strand breaks are early intermediates of the repair of UVC-induced DNA damage, however, since they severely impair cellular activities, their presence should be limited in time. In this study, the effects of incomplete repair of UVC-induced DNA strand breaks are investigated on K562 cell growth and the induction of erythroid differentiation by addition of DMSO to the cell culture medium. The kinetics were followed after UV irradiation by single cell gel electrophoresis, and in total cell population by alkaline or neutral agarose gel electrophoresis. Shortly after exposure, an extensive fragmentation occurred in DNA; DNA double strand breaks were negatively correlated with recovery time for DNA integrity. DNA damage induced by UVC 9J/m2 rapidly triggered necrosis in a large fraction of irradiated K562 cells, and only 40% of treated cells resumed growth at a very low rate within 24h of culture. The addition of DMSO to the culture medium of cells 15min after UVC, when DNA strand break repair was not yet complete, produced apoptosis in >70% of surviving cells, as determined by TUNEL assay. Conversely, if DMSO was added when the resealing of DNA strand breaks was complete, surviving K562 cells retained full growth capacity, and their progeny underwent erythroid differentiation with normal levels of erythroid proteins, delta-aminolevulinic acid dehydrase and hemoglobin. This study shows that the extent of DNA strand break repair influences cell proliferation and the DMSO induced erythroid program, and the same UVC dose can have opposite effects depending on cellular status.
Collapse
Affiliation(s)
- Magda Foresti
- University of Naples Federico II, Department of Biological Sciences, Section of Genetics and Molecular Biology, via Mezzocannone 8, 80134 Naples, Italy.
| | | |
Collapse
|
14
|
Ryabokon NI, Goncharova RI, Duburs G, Hancock R, Rzeszowska-Wolny J. Changes in poly(ADP-ribose) level modulate the kinetics of DNA strand break rejoining. Mutat Res 2007; 637:173-81. [PMID: 17935742 DOI: 10.1016/j.mrfmmm.2007.08.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2007] [Revised: 07/16/2007] [Accepted: 08/07/2007] [Indexed: 12/20/2022]
Abstract
ADP-ribose polymers are rapidly synthesized in cell nuclei by the poly(ADP-ribose) polymerases PARP-1 and PARP-2 in response to DNA strand interruptions, using NAD(+) as precursor. The level of induced poly(ADP-ribose) formation is proportional to the level of DNA damage and can be decreased by NAD(+) or PARP deficiency, followed by poor DNA repair and genomic instability. Here we studied the correlation between poly(ADP-ribose) level and DNA strand break repair in lymphoblastoid Raji cells. Poly(ADP-ribose) synthesis was induced by 100 microM H(2)O(2) and intensified by the 1,4-dihydropyridine derivative AV-153. The level of poly(ADP-ribose) in individual cells was analyzed by quantitative in situ immunofluorescence and confirmed in whole-cell extracts by Western blotting, and DNA damage was assessed by alkaline comet assays. Cells showed a approximately 100-fold increase in poly(ADP-ribose) formation during the first 5 min of recovery from H(2)O(2) treatment, followed by a gradual decrease up to 15 min. This synthesis was completely inhibited by the PARP inhibitor NU1025 (100 microM) while the cells treated with AV-153, at non-genotoxic concentrations of 1 nM-10 microM, showed a concentration-dependent increase of poly(ADP-ribose) level up to 130% after the first minute of recovery. The transient increase in poly(ADP-ribose) level was strongly correlated with the speed and efficiency of DNA strand break rejoining (correlation coefficient r > or = 0.92, p<0.05). These results are consistent with the idea that poly(ADP-ribose) formation immediately after genome damage reflects rapid assembly and efficient functioning of repair machinery.
Collapse
Affiliation(s)
- Nadezhda I Ryabokon
- Department of Experimental and Clinical Radiobiology, M Sklodowska-Curie Memorial Cancer Center and Institute, Wybrzeze Armii Krajowej 15, 44-101, Gliwice, Poland
| | | | | | | | | |
Collapse
|
15
|
Berndt U, Bartsch S, Philipsen L, Danese S, Wiedenmann B, Dignass AU, Hämmerle M, Sturm A. Proteomic analysis of the inflamed intestinal mucosa reveals distinctive immune response profiles in Crohn's disease and ulcerative colitis. THE JOURNAL OF IMMUNOLOGY 2007; 179:295-304. [PMID: 17579049 DOI: 10.4049/jimmunol.179.1.295] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Although Crohn's disease (CrD) and ulcerative colitis (UC) share several clinical features, the mechanisms of tissue injury differ. Because the global cellular function depends upon the protein network environment as a whole, we explored changes in the distribution and association of mucosal proteins to define key events involved in disease pathogenesis. Endoscopic biopsies were taken from CrD, UC, and control colonic mucosa, and Multi-Epitope-Ligand-Cartographie immunofluorescence microscopy with 32 different Abs was performed. Multi-Epitope-Ligand-Cartographie is a novel, highly multiplexed robotic imaging technology which allows integrating cell biology and biomathematical tools to visualize dozens of proteins simultaneously in a structurally intact cell or tissue. In CrD, the number of CD3+CD45RA+ naive T cells was markedly increased, but only activated memory, but not naive, T cells expressed decreased levels of Bax, active caspase-3 or -8. In UC, only CD4+ T cells coexpressing NF-kappaB were caspase-8 and poly(ADP-ribose)-polymerase positive. Furthermore, the number of CD4+CD25+ T cells was elevated only in UC, whereas in CrD and controls, the number of these cells was similar. By using hub analysis, we also identified that the colocalization pattern with NF-kappaB+ and poly(ADP-ribose)-polymerase+ as base motifs distinguished CrD from UC. High-content proteomic analysis of the intestinal mucosa demonstrated for the first time that different T cell populations within the intestinal mucosa express proteins translating distinct biological functions in each form of inflammatory bowel disease. Thus, topological proteomic analysis may help to unravel the pathogenesis of inflammatory bowel disease by defining distinct immunopathogenic profiles in CrD and UC.
Collapse
Affiliation(s)
- Uta Berndt
- Division of Gastroenterology and Hepatology, Department of Medicine, Charité-Campus Virchow Clinic, Universitätsmedizin Berlin, Augustenburger Platz 1, D-13353 Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Jiang H, Alonso MM, Gomez-Manzano C, Piao Y, Fueyo J. Oncolytic viruses and DNA-repair machinery: overcoming chemoresistance of gliomas. Expert Rev Anticancer Ther 2007; 6:1585-92. [PMID: 17134363 DOI: 10.1586/14737140.6.11.1585] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The current standard of care for malignant gliomas is surgical resection and radiotherapy followed by extended adjuvant treatment with the alkylating agent temozolomide. Temozolomide causes DNA damage, which induces cell death. Through changes in the DNA-repair machinery, glioma cells develop resistance to temozolomide, compromising the therapeutic effect of the drug. Oncolytic viruses, such as herpes simplex viruses and adenoviruses, are being introduced into clinical trials as a new treatment for this malignancy. Biological studies have revealed that these viruses use mechanisms to either inactivate (adenovirus) or take advantage of (herpes simplex virus) the cellular DNA-repair machinery to achieve productive replication. Adenoviruses express proteins from the early genes to either downregulate the damage-repair enzyme, O(6)-methylguanine-DNA methyltransferase, or degrade poly (ADP-ribose) polymerase or the Mre11-Rad50-NBS1 complex, which detects DNA strand breaks. Temozolomide enhances herpes simplex virus oncolysis by upregulating the DNA repair-related genes growth arrest DNA damage 34 and ribonucleotide reductase. The interactions between viruses and the DNA-repair machinery suggest that a combined temozolomide and viral therapy will overcome the limitations of a single therapy by diminishing chemoresistance or enhancing oncolysis. This hypothesis has been supported by promising findings from preclinical and clinical studies.
Collapse
Affiliation(s)
- Hong Jiang
- University of Texas MD Anderson Cancer Center, Department of Neuro-Oncology, 1515 Holcombe Blvd., Box 1002, Houston, TX 77030, USA.
| | | | | | | | | |
Collapse
|
17
|
Figueroa JD, Malats N, Real FX, Silverman D, Kogevinas M, Chanock S, Welch R, Dosemeci M, Tardón A, Serra C, Carrato A, García-Closas R, Castaño-Vinyals G, Rothman N, García-Closas M. Genetic variation in the base excision repair pathway and bladder cancer risk. Hum Genet 2007; 121:233-42. [PMID: 17203305 DOI: 10.1007/s00439-006-0294-y] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2006] [Accepted: 11/03/2006] [Indexed: 10/23/2022]
Abstract
Genetic polymorphisms in DNA repair genes may impact individual variation in DNA repair capacity and alter cancer risk. In order to examine the association of common genetic variation in the base-excision repair (BER) pathway with bladder cancer risk, we analyzed 43 single nucleotide polymorphisms (SNPs) in 12 BER genes (OGG1, MUTYH, APEX1, PARP1, PARP3, PARP4, XRCC1, POLB, POLD1, PCNA, LIG1, and LIG3). Using genotype data from 1,150 cases of urinary bladder transitional cell carcinomas and 1,149 controls from the Spanish Bladder Cancer Study we estimated odds ratios (ORs) and 95% confidence intervals (CIs) adjusting for age, gender, region and smoking status. SNPs in three genes showed significant associations with bladder cancer risk: the 8-oxoG DNA glycosylase gene (OGG1), the Poly (ADP-ribose) polymerase family member 1 (PARP1) and the major gap filling polymerase-beta (POLB). Subjects who were heterozygous or homozygous variant for an OGG1 SNP in the promoter region (rs125701) had significantly decreased bladder cancer risk compared to common homozygous: OR (95%CI) 0.78 (0.63-0.96). Heterozygous or homozygous individuals for the functional SNP PARP1 rs1136410 (V762A) or for the intronic SNP POLB rs3136717 were at increased risk compared to those homozygous for the common alleles: 1.24 (1.02-1.51) and 1.30 (1.04-1.62), respectively. In summary, data from this large case-control study suggested bladder cancer risk associations with selected BER SNPs, which need to be confirmed in other study populations.
Collapse
Affiliation(s)
- Jonine D Figueroa
- Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute, Bethesda, MD, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Olesen C, Nyeng P, Kalisz M, Jensen TH, Møller M, Tommerup N, Byskov AG. Global gene expression analysis in fetal mouse ovaries with and without meiosis and comparison of selected genes with meiosis in the testis. Cell Tissue Res 2006; 328:207-21. [PMID: 17431699 DOI: 10.1007/s00441-006-0205-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2006] [Accepted: 03/22/2006] [Indexed: 10/23/2022]
Abstract
In order to identify novel genes involved in early meiosis and early ovarian development in the mouse, we used microarray technology to compare transcriptional activity in ovaries without meiotic germ cells at embryonic age 11.5 (E11.5) and E13.5 ovaries with meiosis. Overall, 182 genes were differentially expressed; 134 were known genes and 48 were functionally uncharacterized. A comparison of our data with the literature associated, for the first time, at least eight of the known genes with female meiosis/germ cell differentiation (Aldh1a1, C2pa, Tex12, Stk31, Lig3, Id4, Recql, Piwil2). These genes had previously only been described in spermatogenesis. The microarray also detected an abundance of vesicle-related genes of which four were upregulated (Syngr2, Stxbp1, Ric-8, SytIX) and one (Myo1c) was downregulated in E13.5 ovaries. Detailed analysis showed that the temporal expression of SytIX also coincided with the first meiotic wave in the pubertal testis. This is the first time that SytIX has been reported in non-neuronal tissue. Finally, we examined the expression of one of the uncharacterized genes and found it to be gonad-specific in adulthood. We named this novel transcript "Gonad-expressed transcript 1" (Get-1). In situ hybridization showed that Get-1 was expressed in meiotic germ cells in both fetal ovaries and mature testis. Get-1 is therefore a novel gene in both male and female meiosis.
Collapse
Affiliation(s)
- C Olesen
- Laboratory of Reproductive Biology, Center for Children, Women and Reproduction, Copenhagen University Hospital, Copenhagen, Denmark.
| | | | | | | | | | | | | |
Collapse
|