1
|
Maia M, Resende DISP, Durães F, Pinto MMM, Sousa E. Xanthenes in Medicinal Chemistry - Synthetic strategies and biological activities. Eur J Med Chem 2020; 210:113085. [PMID: 33310284 DOI: 10.1016/j.ejmech.2020.113085] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/30/2020] [Accepted: 11/30/2020] [Indexed: 01/10/2023]
Abstract
BACKGROUND Xanthenes are a special class of oxygen-incorporating tricyclic compounds. Structurally related to xanthones, the presence of different substituents in position 9 strongly influences their physical and chemical properties, as well as their biological applications. This review explores the synthetic methodologies developed to obtain 9H-xanthene, 9-hydroxyxanthene and xanthene-9-carboxylic acid, as well as respective derivatives, from simple starting materials or through modification of related structures. Azaxanthenes, bioisosteres of xanthenes, are also explored. Efficiency, safety, ecological impact and applicability of the described synthetic methodologies are discussed. Synthesis of multi-functionalized derivatives with drug-likeness properties are also reported and their activities explored. Synthetic methodologies for obtaining (aza)xanthenes from simple building blocks are available, and electrochemical and/or metal free procedures recently developed arise as greener and efficient methodologies. Nonetheless, the synthesis of xanthenes through the modification of the carbonyl in position 9 of xanthones represents the most straightforward procedure to easily obtain a variety of (aza)xanthenes. (Aza)xanthene derivatives displayed biological activity as neuroprotector, antitumor, antimicrobial, among others, proving the versatility of this nucleus for different biological applications. However, in some cases their chemical structures suggest a lack of pharmacokinetic properties being associated with safety concerns, which should be overcome if intended for clinical evaluation.
Collapse
Affiliation(s)
- Miguel Maia
- CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros Do Porto de Leixões, 4450-208, Matosinhos, Portugal; Laboratório de Química Orgânica e Farmacêutica, Faculdade de Farmácia, Universidade Do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Diana I S P Resende
- CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros Do Porto de Leixões, 4450-208, Matosinhos, Portugal; Laboratório de Química Orgânica e Farmacêutica, Faculdade de Farmácia, Universidade Do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Fernando Durães
- CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros Do Porto de Leixões, 4450-208, Matosinhos, Portugal; Laboratório de Química Orgânica e Farmacêutica, Faculdade de Farmácia, Universidade Do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Madalena M M Pinto
- CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros Do Porto de Leixões, 4450-208, Matosinhos, Portugal; Laboratório de Química Orgânica e Farmacêutica, Faculdade de Farmácia, Universidade Do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Emília Sousa
- CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros Do Porto de Leixões, 4450-208, Matosinhos, Portugal; Laboratório de Química Orgânica e Farmacêutica, Faculdade de Farmácia, Universidade Do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.
| |
Collapse
|
3
|
Sheela C, Anitha C, Tharmaraj P, Kodimunthri D. Synthesis, spectral characterization, and antimicrobial studies of metal complexes of the Schiff base derived from [4-amino-N-guanylbenzene sulfonamide] and salicylaldehyde. J COORD CHEM 2010. [DOI: 10.1080/00958971003660416] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- C.D. Sheela
- a Department of Chemistry , The American College , Madurai–625002, Tamil Nadu, India
| | - C. Anitha
- a Department of Chemistry , The American College , Madurai–625002, Tamil Nadu, India
| | - P. Tharmaraj
- b Department of Chemistry , Thiagarajar College , Madurai–625009, Tamil Nadu, India
| | - D. Kodimunthri
- b Department of Chemistry , Thiagarajar College , Madurai–625009, Tamil Nadu, India
| |
Collapse
|
8
|
Moskalyk RE, Malicky JL. Alkylation by secondary alcohols III: Fusion of medicinal sulfanilamides with benzhydrol. J Pharm Sci 1975; 64:292-4. [PMID: 1127585 DOI: 10.1002/jps.2600640221] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The fusion of certain sulfanilamides with benzhydrol in the presence of anhydrous zinc chloride affords several different products, depending primarily on the temperature at which the reaction is carried out. With sulfanilamide itself, three different products were isolated at 100, 160, and 180 degrees. A sequence of steps is suggested to account for the three products, one of which involves an intramolecular rearrangement of a benzhydryl moiety. The fusion of benzhydrol with p-toludine gives 2,6-dibenzhydrylaniline and not the N,N-dibenzhydryl derivative as previously reported.
Collapse
|