1
|
Retraction: β-arrestin-1 mediates the endothelin-1-induced activation of Akt and integrin-linked kinase. Can J Physiol Pharmacol 2024; 102:682. [PMID: 39177107 DOI: 10.1139/cjpp-2024-0265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
|
2
|
Rodas F, Vidal-Vidal JA, Herrera D, Brown-Brown DA, Vera D, Veliz J, Püschel P, Erices JI, Sánchez Hinojosa V, Tapia JC, Silva-Pavez E, Quezada-Monrás C, Mendoza-Soto P, Salazar-Onfray F, Carrasco C, Niechi I. Targeting the Endothelin-1 pathway to reduce invasion and chemoresistance in gallbladder cancer cells. Cancer Cell Int 2023; 23:318. [PMID: 38072958 PMCID: PMC10710704 DOI: 10.1186/s12935-023-03145-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/14/2023] [Indexed: 01/03/2025] Open
Abstract
BACKGROUND Gallbladder cancer (GBC) is a prevalent and deadly biliary tract carcinoma, often diagnosed at advanced stages with limited treatment options. The 5-year survival rate varies widely from 4 to 60%, mainly due to differences in disease stage detection. With only a small fraction of patients having resectable tumors and a high incidence of metastasis, advanced GBC stages are characterized by significant chemoresistance. Identification of new therapeutic targets is crucial, and recent studies have shown that the Endothelin-1 (ET-1) signaling pathway, involving ETAR and/or ETBR receptors (ETRs), plays a crucial role in promoting tumor aggressiveness in various cancer models. Blocking one or both receptors has been reported to reduce invasiveness and chemoresistance in cancers like ovarian, prostate, and colon. Furthermore, transcriptomic studies have associated ET-1 levels with late stages of GBC; however, it remains unclear whether its signaling or its inhibition has implications for its aggressiveness. Although the role of ET-1 signaling in gallbladder physiology is minimally understood, its significance in other tumor models leads us to hypothesize its involvement in GBC malignancy. RESULTS In this study, we investigated the expression of ET-1 pathway proteins in three GBC cell lines and a primary GBC culture. Our findings demonstrated that both ETAR and ETBR receptors are expressed in GBC cells and tumor samples. Moreover, we successfully down-regulated ET-1 signaling using a non-selective ETR antagonist, Macitentan, which resulted in reduced migratory and invasive capacities of GBC cells. Additionally, Macitentan treatment chemosensitized the cells to Gemcitabine, a commonly used therapy for GBC. CONCLUSION For the first time, we reveal the role of the ET-1 pathway in GBC cells, providing insight into the potential therapeutic targeting of its receptors to mitigate invasion and chemoresistance in this cancer with limited treatment options. These findings pave the way for further exploration of Macitentan or other ETR antagonists as potential therapeutic strategies for GBC management. In summary, our study represents a groundbreaking contribution to the field by providing the first evidence of the ET 1 pathway's pivotal role in modulating the behavior and aggressiveness of GBC cells, shedding new light on potential therapeutic targets.
Collapse
Affiliation(s)
- Francisco Rodas
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Jetzabel A Vidal-Vidal
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Daniela Herrera
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - David A Brown-Brown
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Diego Vera
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Joaquín Veliz
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Pilar Püschel
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - José I Erices
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Verónica Sánchez Hinojosa
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Julio C Tapia
- Laboratorio de transformación celular, Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, 8380453, Santiago, Chile
| | - Eduardo Silva-Pavez
- Facultad de Odontología y Ciencias de la Rehabilitación, Universidad San Sebastián, Bellavista, Santiago, Chile
| | - Claudia Quezada-Monrás
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
- Millennium Institute on Immunology and Immunotherapy, Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Pablo Mendoza-Soto
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Flavio Salazar-Onfray
- Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, Universidad de Chile, 8380453, Santiago, Chile
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, 8380453, Santiago, Chile
| | - Cristian Carrasco
- Subdepartamento de Anatomía Patológica, Hospital Base de Valdivia, 5090000, Valdivia, Chile
| | - Ignacio Niechi
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile.
- Millennium Institute on Immunology and Immunotherapy, Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile.
| |
Collapse
|
3
|
Catar RA, Wischnewski O, Chen L, Heidecke H, Rutz C, Schülein R, Dragun D, Philippe A, Kusch A. Non-HLA antibodies targeting angiotensin II type 1 receptors and endothelin-1 type A receptors impair endothelial repair via a β2-arrestin link to the mTOR pathway. Kidney Int 2021; 101:498-509. [PMID: 34757123 DOI: 10.1016/j.kint.2021.09.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/02/2021] [Accepted: 09/10/2021] [Indexed: 01/03/2023]
Abstract
Functional non-HLA antibodies (antibodies to non-human leukocyte antigens) targeting the G protein-coupled receptors angiotensin II type 1 receptor (AT1R) and endothelin-1 type A receptor (ETAR) are implicated in the pathogenesis of transplant vasculopathy. While ERK signaling (a regulator of cell growth) may represent a general cellular response to agonist stimulation, the molecular link between receptor stimulation and development of vascular obliteration has not been fully established. Here we hypothesize involvement of the versatile adaptor proteins, β-arrestins, and the major regulator of cell growth, PI3K/mTOR signaling, in impaired endothelial repair. To test this, human microvascular endothelial cells were treated with AT1R/ETAR antibodies isolated from patients with kidney transplant vasculopathy. These antibodies activated both mTOR complexes via AT1R and ETAR in a PI3K-dependent and ERK-independent manner. The mTOR inhibitor, rapamycin, completely abolished activation of mTORC1 and mTORC2 after long-term treatment with receptor antibodies. Imaging studies revealed that β2- but not β1-arrestin was recruited to ETAR in response to ET1 and patient antibodies but not with antibodies isolated from healthy individuals. Silencing of β2-arrestin by siRNA transfection significantly reduced ERK1/2 and mTORC2 activation. Non-HLA antibodies impaired endothelial repair by AT1R- and ETAR-induced mTORC2 signaling. Thus, we provide evidence that functional AT1R/ETAR antibodies induce ERK1/2 and mTOR signaling involving β2-arrestin in human microvascular endothelium. Hence, our data may provide a translational rational for mTOR inhibitors in combination with receptor blockers in patients with non-HLA receptor recognizing antibodies.
Collapse
Affiliation(s)
- Rusan Ali Catar
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Medizinische Klinik m. S. Nephrologie und internistische Intensivmedizin, Berlin, Germany; Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Cardiovascular Research, Charitéplatz 1, Berlin, Germany.
| | - Oskar Wischnewski
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Medizinische Klinik m. S. Nephrologie und internistische Intensivmedizin, Berlin, Germany
| | - Lei Chen
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Medizinische Klinik m. S. Nephrologie und internistische Intensivmedizin, Berlin, Germany; Department of Nephrology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai City, Guandong Province, People's Republic of China
| | | | - Claudia Rutz
- Leibniz Forschungsinstitut für Molekulare Pharmakologie im Forschungsverbund Berlin e.V., Berlin, Germany
| | - Ralf Schülein
- Leibniz Forschungsinstitut für Molekulare Pharmakologie im Forschungsverbund Berlin e.V., Berlin, Germany
| | - Duska Dragun
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Medizinische Klinik m. S. Nephrologie und internistische Intensivmedizin, Berlin, Germany; Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Cardiovascular Research, Charitéplatz 1, Berlin, Germany; Berlin Institute of Health at Charité-Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, Charitéplatz 1, Berlin, Germany
| | - Aurélie Philippe
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Medizinische Klinik m. S. Nephrologie und internistische Intensivmedizin, Berlin, Germany; Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Cardiovascular Research, Charitéplatz 1, Berlin, Germany; Berlin Institute of Health at Charité-Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, Charitéplatz 1, Berlin, Germany
| | - Angelika Kusch
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Medizinische Klinik m. S. Nephrologie und internistische Intensivmedizin, Berlin, Germany; Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Cardiovascular Research, Charitéplatz 1, Berlin, Germany; Berlin Institute of Health at Charité-Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, Charitéplatz 1, Berlin, Germany; DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany.
| |
Collapse
|
4
|
Xiong X, Nazo N, Revoori R, Rajagopal S, Sparks MA. G protein- and β-arrestin Signaling Profiles of Endothelin Derivatives at the Type A Endothelin Receptor. KIDNEY360 2021; 2:1124-1131. [PMID: 35368349 PMCID: PMC8786096 DOI: 10.34067/kid.0005462020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 05/04/2021] [Indexed: 02/04/2023]
Abstract
Background Endothelin-1 (ET-1) is a potent vasoconstrictor in the cardiovascular system, an effect mediated through the type A endothelin receptor (ETAR), a G protein-coupled receptor (GPCR). Antagonists of the ETAR have shown promising results in randomized clinical trials. However, side effects limit widespread use. Biased agonists have been developed to mitigate the untoward effects of a number of GPCR antagonists. These agents block deleterious G-coupled pathways while stimulating protective β-arrestin pathways. The goal of this study was to test whether there was any significant ligand bias between endothelin derivatives, and whether this could have any physiologic effects in the cardiovascular system. Methods A panel of endothelin derivatives were tested in assays of G protein signaling and β-arrestin 2 recruitment at the ETAR. We then tested the effects of ET-1 on the vasopressor response in wild-type and β-arrestin 1 and 2 KO mice. Results We found the endothelins activated a wide range of G proteins at the ETAR, but none of the endothelin derivatives demonstrated significant biased agonism. Endothelin derivatives did display structure-activity relationships with regards to their degrees of agonism. β-arrestin 1 and 2 knockout mice did not display any differences to wild-type mice in the acute pressor response to ET-1, and β-arrestin 2 knockout mice did not display any blood pressure differences to wild-type mice in the chronic responses to ET-1. Conclusions Our findings are consistent with vasoconstriction being mediated by G proteins with a lack of significant desensitization by β-arrestins at the ETAR. These findings suggest that G protein- and β-arrestin-biased ETAR agonists could have distinct physiologic effects from balanced agonists, although the endothelin peptide scaffold does not appear suitable for designing such ligands.
Collapse
Affiliation(s)
- Xinyu Xiong
- Department of Biochemistry, Duke University, Durham, North Carolina,Division of Cardiology, Duke University School of Medicine, Durham, North Carolina
| | - Nour Nazo
- Department of Biochemistry, Duke University, Durham, North Carolina,Division of Cardiology, Duke University School of Medicine, Durham, North Carolina
| | - Ritika Revoori
- Division of Nephrology, Duke University School of Medicine, Durham, North Carolina
| | - Sudarshan Rajagopal
- Department of Biochemistry, Duke University, Durham, North Carolina,Division of Cardiology, Duke University School of Medicine, Durham, North Carolina
| | - Matthew A. Sparks
- Division of Nephrology, Duke University School of Medicine, Durham, North Carolina,Renal Section, Durham Veterans Affairs Health Care System, Durham, North Carolina
| |
Collapse
|
5
|
Glibo M, Serman A, Karin-Kujundzic V, Bekavac Vlatkovic I, Miskovic B, Vranic S, Serman L. The role of glycogen synthase kinase 3 (GSK3) in cancer with emphasis on ovarian cancer development and progression: A comprehensive review. Bosn J Basic Med Sci 2021; 21:5-18. [PMID: 32767962 PMCID: PMC7861620 DOI: 10.17305/bjbms.2020.5036] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 08/04/2020] [Indexed: 12/27/2022] Open
Abstract
Glycogen synthase kinase 3 (GSK3) is a monomeric serine-threonine kinase discovered in 1980 in a rat skeletal muscle. It has been involved in various cellular processes including embryogenesis, immune response, inflammation, apoptosis, autophagy, wound healing, neurodegeneration, and carcinogenesis. GSK3 exists in two different isoforms, GSK3α and GSK3β, both containing seven antiparallel beta-plates, a short linking part and an alpha helix, but coded by different genes and variously expressed in human tissues. In the current review, we comprehensively appraise the current literature on the role of GSK3 in various cancers with emphasis on ovarian carcinoma. Our findings indicate that the role of GSK3 in ovarian cancer development cannot be decisively determined as the currently available data support both prooncogenic and tumor-suppressive effects. Likewise, the clinical impact of GSK3 expression on ovarian cancer patients and its potential therapeutic implications are also limited. Further studies are needed to fully elucidate the pathophysiological and clinical implications of GSK3 activity in ovarian cancer.
Collapse
Affiliation(s)
- Mislav Glibo
- Department of Biology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Alan Serman
- Centre of Excellence in Reproductive and Regenerative Medicine, University of Zagreb School of Medicine, Zagreb, Croatia; Department of Obstetrics and Gynecology, School of Medicine, University of Zagreb, Zagreb, Croatia; Clinic of Obstetrics and Gynecology, Clinical Hospital "Sveti Duh", Zagreb, Croatia
| | - Valentina Karin-Kujundzic
- Department of Biology, School of Medicine, University of Zagreb, Zagreb, Croatia; Centre of Excellence in Reproductive and Regenerative Medicine, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Ivanka Bekavac Vlatkovic
- Centre of Excellence in Reproductive and Regenerative Medicine, University of Zagreb School of Medicine, Zagreb, Croatia; Department of Obstetrics and Gynecology, School of Medicine, University of Zagreb, Zagreb, Croatia; Clinic of Obstetrics and Gynecology, Clinical Hospital "Sveti Duh", Zagreb, Croatia
| | - Berivoj Miskovic
- Centre of Excellence in Reproductive and Regenerative Medicine, University of Zagreb School of Medicine, Zagreb, Croatia; Department of Obstetrics and Gynecology, School of Medicine, University of Zagreb, Zagreb, Croatia; Clinic of Obstetrics and Gynecology, Clinical Hospital "Sveti Duh", Zagreb, Croatia
| | - Semir Vranic
- College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Ljiljana Serman
- Department of Biology, School of Medicine, University of Zagreb, Zagreb, Croatia; Centre of Excellence in Reproductive and Regenerative Medicine, University of Zagreb School of Medicine, Zagreb, Croatia
| |
Collapse
|
6
|
Lee C, Viswanathan G, Choi I, Jassal C, Kohlmann T, Rajagopal S. Beta-Arrestins and Receptor Signaling in the Vascular Endothelium. Biomolecules 2020; 11:biom11010009. [PMID: 33374806 PMCID: PMC7824595 DOI: 10.3390/biom11010009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/13/2020] [Accepted: 12/19/2020] [Indexed: 12/17/2022] Open
Abstract
The vascular endothelium is the innermost layer of blood vessels and is a key regulator of vascular tone. Endothelial function is controlled by receptor signaling through G protein-coupled receptors, receptor tyrosine kinases and receptor serine-threonine kinases. The β-arrestins, multifunctional adapter proteins, have the potential to regulate all of these receptor families, although it is unclear as to whether they serve to integrate signaling across all of these different axes. Notably, the β-arrestins have been shown to regulate signaling by a number of receptors important in endothelial function, such as chemokine receptors and receptors for vasoactive substances such as angiotensin II, endothelin-1 and prostaglandins. β-arrestin-mediated signaling pathways have been shown to play central roles in pathways that control vasodilation, cell proliferation, migration, and immune function. At this time, the physiological impact of this signaling has not been studied in detail, but a deeper understanding of it could lead to the development of novel therapies for the treatment of vascular disease.
Collapse
Affiliation(s)
- Claudia Lee
- Department of Biochemistry, School of Medicine, Duke University, Durham, NC 27710, USA;
| | - Gayathri Viswanathan
- Medical Center, Department of Medicine, Division of Cardiology, Duke University, Durham, NC 27710, USA; (G.V.); (I.C.)
| | - Issac Choi
- Medical Center, Department of Medicine, Division of Cardiology, Duke University, Durham, NC 27710, USA; (G.V.); (I.C.)
| | - Chanpreet Jassal
- College of Arts and Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | - Taylor Kohlmann
- Trinity College of Arts and Sciences, Duke University, Durham, NC 27708, USA;
| | - Sudarshan Rajagopal
- Department of Biochemistry, School of Medicine, Duke University, Durham, NC 27710, USA;
- Medical Center, Department of Medicine, Division of Cardiology, Duke University, Durham, NC 27710, USA; (G.V.); (I.C.)
- Correspondence:
| |
Collapse
|
7
|
Zrein A, Bagher AM, Young AP, Denovan-Wright EM, Kelly MEM. Endothelin receptor heteromerization inhibits β-arrestin function in HEK293 cells. Can J Physiol Pharmacol 2020; 98:531-540. [PMID: 32744876 DOI: 10.1139/cjpp-2019-0620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The endothelin receptor A (ETA) and endothelin receptor B (ETB) are G protein-coupled receptors that are co-expressed in vascular smooth muscle cells. Endothelin-1 (ET-1) activates endothelin receptors to cause microvascular vasoconstriction. Previous studies have shown that heteromerization between ETA and ETB prolongs Ca2+ transients, leading to prolongation of Gαq-dependent signaling and sustained vasoconstriction. We hypothesized that these effects are in part mediated by the resistance of ETA/ETB heteromers to β-arrestin recruitment and subsequent desensitization. Using bioluminescence resonance energy transfer 2 (BRET2), we found that ETB has a relatively equal affinity to form either homomers or heteromers with ETA when co-expressed in the human embryonic kidney 293 (HEK293) cells. When co-expressed, activation of ETA and ETB by ET-1 caused a heteromer-specific reduction and delay in β-arrestin-2 recruitment with a corresponding reduction and delay in ET-1-induced ETA/ETB co-internalization. Furthermore, the co-expression of ETA and ETB inhibited ET-1-induced β-arrestin-1-dependent extracellular signal-regulated kinase (ERK) phosphorylation while prolonging ET-1-induced Gαq-dependent ERK phosphorylation. ETA/ETB heteromerization mediates the long-lasting vasoconstrictor response to ET-1 by the prolongation of Gαq-dependent signaling and inhibition of β-arrestin function.
Collapse
Affiliation(s)
- Adel Zrein
- Department of Pharmacology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Amina M Bagher
- Department of Pharmacology and Toxicology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Alexander P Young
- Department of Pharmacology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | | | - Melanie E M Kelly
- Department of Pharmacology, Dalhousie University, Halifax, NS B3H 4R2, Canada.,Department of Ophthalmology and Visual Sciences, Dalhousie University, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
8
|
Li B, Wang X, Wang R, Rutz B, Ciotkowska A, Gratzke C, Herlemann A, Spek A, Tamalunas A, Waidelich R, Stief CG, Hennenberg M. Inhibition of neurogenic and thromboxane A 2 -induced human prostate smooth muscle contraction by the integrin α2β1 inhibitor BTT-3033 and the integrin-linked kinase inhibitor Cpd22. Prostate 2020; 80:831-849. [PMID: 32449814 DOI: 10.1002/pros.23998] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/16/2020] [Accepted: 04/19/2020] [Indexed: 01/23/2023]
Abstract
INTRODUCTION Prostate smooth muscle contraction is critical for etiology and treatment of lower urinary tract symptoms in benign prostatic hyperplasia (BPH). Integrins connect the cytoskeleton to membranes and cells to extracellular matrix, what is essential for force generation in smooth muscle contraction. Integrins are composed of different subunits and may cooperate with integrin-linked kinase (ILK). Here, we examined effects of inhibitors for different integrin heterodimers and ILK on contraction of human prostate tissues. METHODS Prostate tissues were obtained from radical prostatectomy. Integrins and ILK were detected by Western blot, real-time polymerase chain reaction (RT-PCR), and double fluorescence staining. Smooth muscle contractions of prostate strips were studied in an organ bath. Contractions were compared after application of solvent (controls), the ILK inhibitor Cpd22 (N-methyl-3-(1-(4-(piperazin-1-yl)phenyl)-5-(4'-(trifluoromethyl)-[1,1'-biphenyl]-4-yl)-1H-pyrazol-3-yl)propanamide), the integrin α2β1 inhibitor BTT-3033 (1-(4-fluorophenyl)-N-methyl-N-[4[[(phenylamino)carbonyl]amino]phenyl]-1H-pyrazole-4-sulfonamide), or the integrin α4β1/α9β1 inhibitor BOP (N-(benzenesulfonyl)- l-prolyl- l-O-(1-pyrrolidinylcarbonyl)tyrosine sodium salt). RESULTS Western blot analyses of prostate tissues using antibodies raised against integrins α2b, α4, α9, β1, and ILK revealed bands matching the expected sizes of corresponding antigens. Expression of integrins and ILK was confirmed by RT-PCR. Individual variations of expression levels occurred independently from divergent degree of BPH, reflected by different contents of prostate-specific antigen. Double fluorescence staining of prostate sections using antibodies raised against integrins α2 and β1, or against ILK resulted in immunoreactivity colocalizing with calponin, suggesting localization in prostate smooth muscle cells. Electric field stimulation (EFS) induced frequency-dependent contractions, which were inhibited by Cpd22 (3 µM) and BTT-3033 (1 µM) (inhibition around 37% by Cpd22 and 46% by BTT-3033 at 32 Hz). The thromboxane A2 analog U46619-induced concentration-dependent contractions, which were inhibited by Cpd22 and BTT-3033 (around 67% by Cpd22 and 39% by BTT-3033 at 30 µM U46619). Endothelin-1 induced concentration-dependent contractions, which were not affected by Cpd22 or BTT-3033. Noradrenaline and the α1 -adrenergic agonists methoxamine and phenylephrine-induced concentration-dependent contractions, which were not or very slightly inhibited by Cpd22 and BTT-3033. BOP did not change EFS- or agonist-induced contraction. CONCLUSIONS Integrin α2β1 and ILK inhibitors inhibit neurogenic and thromboxane A2 -induced prostate smooth muscle contraction in human BPH. A role for these targets for prostate smooth muscle contraction may appear possible.
Collapse
Affiliation(s)
- Bingsheng Li
- Department of Urology, LMU Munich, University Hospital, Munich, Germany
| | - Xiaolong Wang
- Department of Urology, LMU Munich, University Hospital, Munich, Germany
| | - Ruixiao Wang
- Department of Urology, LMU Munich, University Hospital, Munich, Germany
| | - Beata Rutz
- Department of Urology, LMU Munich, University Hospital, Munich, Germany
| | - Anna Ciotkowska
- Department of Urology, LMU Munich, University Hospital, Munich, Germany
| | | | - Annika Herlemann
- Department of Urology, LMU Munich, University Hospital, Munich, Germany
| | - Annabel Spek
- Department of Urology, LMU Munich, University Hospital, Munich, Germany
| | | | | | - Christian G Stief
- Department of Urology, LMU Munich, University Hospital, Munich, Germany
| | - Martin Hennenberg
- Department of Urology, LMU Munich, University Hospital, Munich, Germany
| |
Collapse
|
9
|
Huang Y, Gao J, Zhou Y, Wu S, Shao Y, Xue H, Shen B, Ding L, Wei Z. Therapeutic effect of integrin-linked kinase gene-modified bone marrow-derived mesenchymal stem cells for streptozotocin-induced diabetic cystopathy in a rat model. Stem Cell Res Ther 2020; 11:278. [PMID: 32650831 PMCID: PMC7350700 DOI: 10.1186/s13287-020-01795-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/16/2020] [Accepted: 06/29/2020] [Indexed: 12/26/2022] Open
Abstract
Background Diabetic cystopathy (DCP) is a chronic complication of diabetes mainly within the submucosal and muscular layers of the bladder due to the hyperglycemia-induced ischemia. As no effective therapies are currently available, the administration of optimized mesenchymal stem cells (MSCs) provides a potential treatment of DCP. Thus far, new strategy, such as genetic modification of MSCs, has been developed and has shown promising outcomes of various disorders. Methods This study was conducted using integrin-linked kinase (ILK) gene-modified bone marrow-derived stem cells (BMSCs) for streptozotocin (STZ)-induced diabetic cystopathy in a rat model. In total, 68 male Sprague-Dawley rats were randomized into five groups: sham control (control group, n = 10); DCP model alone (DM group, n = 10); DCP rats intravenously treated with BMSCs (BMSC group, n = 16); DCP rats accepted adenoviral vector-infected BMSCs (Ad-null-BMSC group, n = 16) and DCP rats accepted ILK adenoviral vector-infected BMSCs (Ad-ILK-BMSC group, n = 16). Diabetic rats accepted cell transplantation in the experimental group (2 rats per group) were sacrificed for the bladder tissue on the third day, 7th day, and 14th day of treatment respectively ahead of schedule. At 4 weeks after treatment, all rats in five groups accepted urodynamic studies to evaluate bladder function and were sacrificed for bladder tissue. Results Our data showed that the underactive bladder function was significantly improved in DCP rats intravenously treated with ILK gene-modified BMSCs compared to those in the DM, BMSCs, and Ad-null-BMSC group. Meanwhile, we found that gene-modified BMSC treatment significantly promoted the activation of the AKT/GSK-3β pathway by increasing phosphorylation and led to the enhancement of survival. In addition, the expression levels of angiogenesis-related protein vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), and stromal cell-derived factor-1 (SDF-1) were significantly higher in the Ad-ILK-BMSC group than that in the DM, BMSCs, and Ad-null-BMSC group as assessed by enzyme-linked immunosorbent assay and western blot. As two indicators of vascular endothelial cell markers, the expression of von Willebrand factor (vWF) and CD31 by western blot and immunofluorescent staining revealed that the percentage of the vascular area of the bladder tissue significantly increased in Ad-ILK-BMSC group compared with the BMSCs and Ad-null-BMSC group on the 14th day of treatment. Histological and immunohistochemical staining (hematoxylin and eosin (HE), vWF, Ki67, and TUNNEL) on the bladder tissue revealed statistically different results between groups. Conclusion ILK gene-modified BMSCs restored the bladder function and histological construction via promoting the process of angiogenesis and protecting cells from high glucose-associated apoptosis in STZ-induced DCP rat model, which provides a potential for the treatment of patients with DCP.
Collapse
Affiliation(s)
- Yi Huang
- Department of Urology, Nanjing Medical University Second Affiliated Hospital, No.121 Jiangjiayuan Road, Gulou District, Nanjing, 21000, China.,Department of Urology, Affiliated Hospital, Jiangnan University, Wuxi, China
| | - Jie Gao
- Department of Urology, Nanjing Medical University Second Affiliated Hospital, No.121 Jiangjiayuan Road, Gulou District, Nanjing, 21000, China
| | - Yiduo Zhou
- Department of Urology, Nanjing Medical University Second Affiliated Hospital, No.121 Jiangjiayuan Road, Gulou District, Nanjing, 21000, China
| | - Shuo Wu
- Department of Urology, Nanjing Medical University Second Affiliated Hospital, No.121 Jiangjiayuan Road, Gulou District, Nanjing, 21000, China
| | - Yunpeng Shao
- Department of Urology, Nanjing Medical University Second Affiliated Hospital, No.121 Jiangjiayuan Road, Gulou District, Nanjing, 21000, China
| | - Haoliang Xue
- Department of Urology, Nanjing Medical University Second Affiliated Hospital, No.121 Jiangjiayuan Road, Gulou District, Nanjing, 21000, China.,Department of Urology, Jiangdu People's Hospital of Yangzhou, Yangzhou, China
| | - Baixin Shen
- Department of Urology, Nanjing Medical University Second Affiliated Hospital, No.121 Jiangjiayuan Road, Gulou District, Nanjing, 21000, China
| | - Liucheng Ding
- Department of Urology, Nanjing Medical University Second Affiliated Hospital, No.121 Jiangjiayuan Road, Gulou District, Nanjing, 21000, China.
| | - Zhongqing Wei
- Department of Urology, Nanjing Medical University Second Affiliated Hospital, No.121 Jiangjiayuan Road, Gulou District, Nanjing, 21000, China.
| |
Collapse
|
10
|
Liu S, Luttrell LM, Premont RT, Rockey DC. β-Arrestin2 is a critical component of the GPCR-eNOS signalosome. Proc Natl Acad Sci U S A 2020; 117:11483-11492. [PMID: 32404425 PMCID: PMC7261012 DOI: 10.1073/pnas.1922608117] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/31/2020] [Indexed: 12/14/2022] Open
Abstract
Endothelial cell nitric oxide (NO) synthase (eNOS), the enzyme responsible for synthesis of NO in endothelial cells, is regulated by complex posttranslational mechanisms. Sinusoidal portal hypertension, a disorder characterized by liver sinusoidal endothelial cell (SEC) injury with resultant reduced eNOS activity and NO production within the liver, has been associated with defects in eNOS protein-protein interactions and posttranslational modifications. We and others have previously identified novel eNOS interactors, including G protein-coupled receptor (GPCR) kinase interactor 1 (GIT1), which we found to play an unexpected stimulatory role in GPCR-mediated eNOS signaling. Here we report that β-arrestin 2 (β-Arr2), a canonical GPCR signaling partner, localizes in SECs with eNOS in a GIT1/eNOS/NO signaling module. Most importantly, we show that β-Arr2 stimulates eNOS activity, and that β-Arr2 expression is reduced and formation of the GIT1/eNOS/NO signaling module is interrupted during liver injury. In β-Arr2-deficient mice, bile duct ligation injury (BDL) led to significantly reduced eNOS activity and to a dramatic increase in portal hypertension compared to BDL in wild-type mice. Overexpression of β-Arr2 in injured or β-Arr2-deficient SECs rescued eNOS function by increasing eNOS complex formation and NO production. We also found that β-Arr2-mediated GIT1/eNOS complex formation is dependent on Erk1/2 and Src, two kinases known to interact with and be activated by β-Arr2 in response to GCPR activation. Our data emphasize that β-Arr2 is an integral component of the GIT1/eNOS/NO signaling pathway and have implications for the pathogenesis of sinusoidal portal hypertension.
Collapse
Affiliation(s)
- Songling Liu
- Division of Gastroenterology and Hepatology, Medical University of South Carolina, Charleston, SC 29425
| | - Louis M Luttrell
- Division of Gastroenterology and Hepatology, Medical University of South Carolina, Charleston, SC 29425
| | - Richard T Premont
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106
- Institute for Transformative Molecular Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - Don C Rockey
- Division of Gastroenterology and Hepatology, Medical University of South Carolina, Charleston, SC 29425;
| |
Collapse
|
11
|
Chellini L, Caprara V, Spadaro F, Sestito R, Bagnato A, Rosanò L. Regulation of extracellular matrix degradation and metastatic spread by IQGAP1 through endothelin-1 receptor signalling in ovarian cancer. Matrix Biol 2019; 81:17-33. [PMID: 30367951 DOI: 10.1016/j.matbio.2018.10.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 10/22/2018] [Accepted: 10/22/2018] [Indexed: 12/25/2022]
Abstract
The invasive phenotype of serous ovarian cancer (SOC) cells is linked to the formation of actin-based protrusions, invadopodia, operating extracellular matrix (ECM) degradation and metastatic spread. Growth factor receptors might cause engagement of integrin-related proteins, like the polarity protein IQ-domain GTPase-activating protein 1 (IQGAP1), to F-actin core needed for invadopodia functions. Here, we investigated whether IQGAP1 forms a signalosome with endothelin-1 (ET-1)/β-arrestin1 (β-arr1) network, as signal-integrating module for adhesion components, cytoskeletal remodelling and ECM degradation. In SOC cells, ET-1 receptor (ET-1R) activation, besides altering IQGAP1 expression and localization, coordinates the binding of IQGAP1 with β-arr1, representing a "hotspot" for ET-1R-induced invasive signalling. We demonstrated that the molecular interaction of IQGAP1 with β-arr1 affects relocalization of focal adhesion components, as vinculin, and cytoskeleton dynamics, through the regulation of invadopodia-related pathways. In particular, ET-1R deactivates Rac1 thereby promoting RhoA/C activation for the correct functions of invasive structures. Silencing of either IQGAP1 or β-arr1, or blocking ET-1R activation with a dual antagonist macitentan, prevents matrix metalloproteinase (MMP) activity, invadopodial function, transendothelial migration and cell invasion. In vivo, targeting ET-1R/β-arr1 signalling controls the process of SOC metastasis, associated with reduced levels of IQGAP1, as well as other invadopodia effectors, such as vinculin, phospho-cortactin and membrane type 1-MMP. High expression of ETAR/β-arr1/IQGAP1 positively correlates with poor prognosis, validating the clinical implication of this signature in early prognosis of SOC. These data establish the ET-1R-driven β-arr1/IQGAP1 interaction as a prerequisite for the dynamic integration of pathways in fostering invadopodia and metastatic process in human SOC.
Collapse
Affiliation(s)
- Lidia Chellini
- Unit of Preclinical Models and New Therapeutic Agents, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| | - Valentina Caprara
- Unit of Preclinical Models and New Therapeutic Agents, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| | - Francesca Spadaro
- Confocal Microscopy Unit, Core Facilities, Istituto Superiore di Sanità, Rome, Italy
| | - Rosanna Sestito
- Unit of Preclinical Models and New Therapeutic Agents, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| | - Anna Bagnato
- Unit of Preclinical Models and New Therapeutic Agents, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| | - Laura Rosanò
- Unit of Preclinical Models and New Therapeutic Agents, IRCCS - Regina Elena National Cancer Institute, Rome, Italy.
| |
Collapse
|
12
|
Bagnato A, Rosanò L. New Routes in GPCR/β-Arrestin-Driven Signaling in Cancer Progression and Metastasis. Front Pharmacol 2019; 10:114. [PMID: 30837880 PMCID: PMC6390811 DOI: 10.3389/fphar.2019.00114] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/29/2019] [Indexed: 12/25/2022] Open
Abstract
Tumor cells acquire invasive and metastatic behavior by sensing changes in the localization and activation of signaling pathways, which in turn determine changes in actin cytoskeleton. The core-scaffold machinery associated to β-arrestin (β-arr) is a key mechanism of G-protein coupled receptors (GPCR) to achieve spatiotemporal specificity of different signaling complexes driving cancer progression. Within different cellular contexts, the scaffold proteins β-arr1 or β-arr2 may now be considered organizers of protein interaction networks involved in tumor development and metastatic dissemination. Studies have uncovered the importance of the β-arr engagement with a growing number of receptors, signaling molecules, cytoskeleton regulators, epigenetic modifiers, and transcription factors in GPCR-driven tumor promoting pathways. In many of these molecular complexes, β-arrs might provide a physical link to active dynamic cytoskeleton, permitting cancer cells to adapt and modify the tumor microenvironment to promote the metastatic spread. Given the complexity and the multidirectional β-arr-driven signaling in cancer cells, therapeutic targeting of specific GPCR/β-arr molecular mechanisms is an important avenue to explore when considering future new therapeutic options. The focus of this review is to integrate the most recent developments and exciting findings of how highly connected components of β-arr-guided molecular connections to other pathways allow precise control over multiple signaling pathways in tumor progression, revealing ways of therapeutically targeting the convergent signals in patients.
Collapse
Affiliation(s)
- Anna Bagnato
- Unit of Preclinical Models and New Therapeutic Agents, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | - Laura Rosanò
- Unit of Preclinical Models and New Therapeutic Agents, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
13
|
New insights into the regulation of the actin cytoskeleton dynamics by GPCR/β-arrestin in cancer invasion and metastasis. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 346:129-155. [DOI: 10.1016/bs.ircmb.2019.03.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
14
|
Lee MS, Wang J, Yuan H, Jiao H, Tsai TL, Squire MW, Li WJ. Endothelin-1 differentially directs lineage specification of adipose- and bone marrow-derived mesenchymal stem cells. FASEB J 2018; 33:996-1007. [PMID: 30096039 DOI: 10.1096/fj.201800614r] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Blood vessels composed of endothelial cells (ECs) contact with mesenchymal stem cells (MSCs) in different tissues, suggesting possible interaction between these 2 types of cells. We hypothesized that endothelin-1 (ET1), a secreted paracrine factor of ECs, can differentially direct the lineages of adipose-derived stem cells (ASCs) and bone marrow-derived MSCs (BMSCs). Predifferentiated ASCs and BMSCs were treated with ET1 for 2 cell passages and then induced for multilineage differentiation. Our results showed that adipogenesis of ET1-pretreated ASCs and osteogenesis of ET1-pretreated BMSCs were increased compared to those of control cells. The effect of ET1 on enhancing adipogenesis of ASCs and osteogenesis of BMSCs was attenuated by blocking endothelin receptor type A (ETAR) and/or endothelin receptor type B (ETBR). Western blot analysis indicated that regulation by ET1 was mediated through activation of the protein kinase B and ERK1/2 signaling pathways. We analyzed subpopulations of ASCs and BMSCs with or without ETAR and/or ETBR, and we found that ETAR+/ETBR- and ETAR-/ETBR+ subpopulations of ASCs and those of BMSCs pretreated with ET1 were prone to turning into adipocytes and osteoblasts, respectively, after differentiation induction. Our findings provide insight into the differential regulation of MSC specification by ET1, which may help develop viable approaches for tissue regeneration.-Lee, M.-S., Wang, J., Yuan, H., Jiao, H., Tsai, T.-L., Squire, M. W., Li, W.-J. Endothelin-1 differentially directs lineage specification of adipose- and bone marrow-derived mesenchymal stem cells.
Collapse
Affiliation(s)
- Ming-Song Lee
- Laboratory of Musculoskeletal Biology and Regenerative Medicine, Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA; and
| | - Jesse Wang
- Laboratory of Musculoskeletal Biology and Regenerative Medicine, Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA; and
| | - Huihua Yuan
- Laboratory of Musculoskeletal Biology and Regenerative Medicine, Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Chemical Engineering and Biotechnology, College of Chemistry, Donghua University, Shanghai, China
| | - Hongli Jiao
- Laboratory of Musculoskeletal Biology and Regenerative Medicine, Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Tsung-Lin Tsai
- Laboratory of Musculoskeletal Biology and Regenerative Medicine, Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA; and
| | - Matthew W Squire
- Laboratory of Musculoskeletal Biology and Regenerative Medicine, Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Wan-Ju Li
- Laboratory of Musculoskeletal Biology and Regenerative Medicine, Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA; and
| |
Collapse
|
15
|
Zhang M, Gu WW, Hong XY. Involvement of Endothelin 1 in Remote Preconditioning-Induced Cardioprotection through connexin 43 and Akt/GSK-3β Signaling Pathway. Sci Rep 2018; 8:10941. [PMID: 30026513 PMCID: PMC6053397 DOI: 10.1038/s41598-018-29196-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 07/04/2018] [Indexed: 01/19/2023] Open
Abstract
The present study was aimed to explore the role of endothelins in remote preconditioning (RP)-induced myocardial protection in ischemia-reperfusion (IR) injury. RP stimulus was given by subjecting hind limb to four cycles of ischemia and reperfuion (5 minutes each) using blood pressure cuff in male rats. Following RP, hearts were isolated and subjected to 30 minutes of ischemia and 120 minutes of reperfusion on Langendorff apparatus. The extent of myocardial injury was determined by measuring the levels of LDH-1, CK-MB and cardiac troponin T (cTnT) in coronary effluent; caspase-3 activity and Bcl 2 expression in heart (apoptosis); infarct size by triphenyl tetrazolium chloride and contractility parameters including left ventricular developed pressure, dp/dtmax dp/dtmin and heart rate. RP reduced ischemia reperfusion-induced myocardial injury, increased the levels of endothelin 1 (in blood), Akt-P, GSK-3β-P and P-connexin 43 (in hearts). Pretreatment with ETA receptor antagonist, BQ 123 (1 and 2 mg/kg), ETB receptor antagonist, BQ 788 (1 and 3 mg/kg) and dual inhibitor of ETA and ETB receptor, bonsentan (25 and 50 mg/kg) abolished these effects of RP. However, the effects of bonsentan were more pronounced in comparison to BQ 123 and BQ 788. It is concluded that RP stimulus may release endothelin 1 in the blood, which may activate myocardial ETA and ETB receptors to trigger cardioprotection through connexin 43 and Akt/GSK-3β pathway.
Collapse
Affiliation(s)
- Min Zhang
- Hepatobiliary pancreatic surgery, China-Japan Union Hospital of Jilin University, 126 XianTaiStreet, Changchun, 130033, China
| | - Wei Wei Gu
- Hepatobiliary pancreatic surgery, China-Japan Union Hospital of Jilin University, 126 XianTaiStreet, Changchun, 130033, China
| | - Xing Yu Hong
- Vascular surgery, China-Japan Union Hospital of Jilin University, 126 XianTai Street, Changchun, 130033, China.
| |
Collapse
|
16
|
Rosanò L, Cianfrocca R, Sestito R, Tocci P, Di Castro V, Bagnato A. Targeting endothelin-1 receptor/β-arrestin1 network for the treatment of ovarian cancer. Expert Opin Ther Targets 2017; 21:925-932. [DOI: 10.1080/14728222.2017.1361930] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Laura Rosanò
- Preclinical Models and New Therapeutic Agents Unit, Translational Research Functional Departmental Area, Regina Elena National Cancer Institute, Rome, Italy
| | - Roberta Cianfrocca
- Preclinical Models and New Therapeutic Agents Unit, Translational Research Functional Departmental Area, Regina Elena National Cancer Institute, Rome, Italy
| | - Rosanna Sestito
- Preclinical Models and New Therapeutic Agents Unit, Translational Research Functional Departmental Area, Regina Elena National Cancer Institute, Rome, Italy
| | - Piera Tocci
- Preclinical Models and New Therapeutic Agents Unit, Translational Research Functional Departmental Area, Regina Elena National Cancer Institute, Rome, Italy
| | - Valeriana Di Castro
- Preclinical Models and New Therapeutic Agents Unit, Translational Research Functional Departmental Area, Regina Elena National Cancer Institute, Rome, Italy
| | - Anna Bagnato
- Preclinical Models and New Therapeutic Agents Unit, Translational Research Functional Departmental Area, Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
17
|
Reiter E, Ayoub MA, Pellissier LP, Landomiel F, Musnier A, Tréfier A, Gandia J, De Pascali F, Tahir S, Yvinec R, Bruneau G, Poupon A, Crépieux P. β-arrestin signalling and bias in hormone-responsive GPCRs. Mol Cell Endocrinol 2017; 449:28-41. [PMID: 28174117 DOI: 10.1016/j.mce.2017.01.052] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Revised: 01/31/2017] [Accepted: 01/31/2017] [Indexed: 12/14/2022]
Abstract
G protein-coupled receptors (GPCRs) play crucial roles in the ability of target organs to respond to hormonal cues. GPCRs' activation mechanisms have long been considered as a two-state process connecting the agonist-bound receptor to heterotrimeric G proteins. This view is now challenged as mounting evidence point to GPCRs being connected to large arrays of transduction mechanisms involving heterotrimeric G proteins as well as other players. Amongst the G protein-independent transduction mechanisms, those elicited by β-arrestins upon their recruitment to the active receptors are by far the best characterized and apply to most GPCRs. These concepts, in conjunction with remarkable advances made in the field of GPCR structural biology and biophysics, have supported the notion of ligand-selective signalling also known as pharmacological bias. Interestingly, recent reports have opened intriguing prospects to the way β-arrestins control GPCR-mediated signalling in space and time within the cells. In the present paper, we review the existing evidence linking endocrine-related GPCRs to β-arrestin recruitement, signalling, pathophysiological implications and selective activation by biased ligands and/or receptor modifications. Emerging concepts surrounding β-arrestin-mediated transduction are discussed in the light of the peculiarities of endocrine systems.
Collapse
Affiliation(s)
- Eric Reiter
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France.
| | - Mohammed Akli Ayoub
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France; LE STUDIUM(®) Loire Valley Institute for Advanced Studies, 45000, Orléans, France; Biology Department, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | | | - Flavie Landomiel
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France
| | - Astrid Musnier
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France
| | - Aurélie Tréfier
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France
| | - Jorge Gandia
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France
| | | | - Shifa Tahir
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France
| | - Romain Yvinec
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France
| | - Gilles Bruneau
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France
| | - Anne Poupon
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France
| | - Pascale Crépieux
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France
| |
Collapse
|
18
|
Rosanò L, Bagnato A. β-arrestin1 at the cross-road of endothelin-1 signaling in cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:121. [PMID: 27473335 PMCID: PMC4966762 DOI: 10.1186/s13046-016-0401-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 07/24/2016] [Indexed: 12/15/2022]
Abstract
The advent of targeted therapeutics in human cancer has begun to find novel druggable targets and, in this context, the endothelin-1 receptor (ET-1R), namely ETA receptor (ETAR) and ETB receptor, among the GPCR family represents a class of highly druggable molecules in cancer. ET-1R are aberrantly expressed in human malignancies, potentially representing prognostic factors. Their activation by ligand stimulation initiate signaling cascades activating different downstream effectors, allowing precise control over multiple signaling pathways. ET-1R regulates cell proliferation, survival, motility, cytoskeletal changes, angiogenesis, metastasis as well as drug resistance. The molecular events underlying these responses are the activation of transcriptional factors and coactivators, and downstream genes, acting as key players in tumor growth and progression. ET-1R represent crucial cancer targets that have been exploited for ET-1R therapeutics. Importantly, efforts to explore new information of ETAR in cancer have uncovered that their functions are crucially regulated by multifunctional scaffold protein β-arrestins (β-arrs) which orchestrate the multidimensionality of ETAR signaling into highly regulated and distinct signaling complexes, a property that is highly advantageous for tumor signaling. Moreover, the role of β-arr1 in ET-1 signaling in cancer highlights why the pleiotropic effects of ET-1 and its dynamic signaling are more complex than previously recognized. In order to improve therapeutic strategies that interfere with the widespread effects of ET-1R, it is important to consider antagonists able to turn the receptors “off” selectively controlling β-arr1-dependent signaling, highlighting the possibility that targeting ETAR/β-arr1 may display a large therapeutic window in cancer.
Collapse
Affiliation(s)
- Laura Rosanò
- Preclinical Models and New Therapeutic Agents Unit, Translational Research Functional Departmental Area, Regina Elena National Cancer Institute, Via Elio Chianesi, 53, 00144, Rome, Italy.
| | - Anna Bagnato
- Preclinical Models and New Therapeutic Agents Unit, Translational Research Functional Departmental Area, Regina Elena National Cancer Institute, Via Elio Chianesi, 53, 00144, Rome, Italy.
| |
Collapse
|
19
|
Prihandoko R, Alvarez-Curto E, Hudson BD, Butcher AJ, Ulven T, Miller AM, Tobin AB, Milligan G. Distinct Phosphorylation Clusters Determine the Signaling Outcome of Free Fatty Acid Receptor 4/G Protein-Coupled Receptor 120. Mol Pharmacol 2016; 89:505-20. [PMID: 26873857 DOI: 10.1124/mol.115.101949] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 02/11/2016] [Indexed: 02/14/2025] Open
Abstract
It is established that long-chain free fatty acids includingω-3 fatty acids mediate an array of biologic responses through members of the free fatty acid (FFA) receptor family, which includes FFA4. However, the signaling mechanisms and modes of regulation of this receptor class remain unclear. Here, we employed mass spectrometry to determine that phosphorylation of mouse (m)FFAR4 occurs at five serine and threonine residues clustered in two separable regions of the C-terminal tail, designated cluster 1 (Thr(347), Thr(349), and Ser(350)) and cluster 2 (Ser(357)and Ser(361)). Mutation of these phosphoacceptor sites to alanine completely prevented phosphorylation of mFFA4 but did not limit receptor coupling to extracellular signal regulated protein kinase 1 and 2 (ERK1/2) activation. Rather, an inhibitor of Gq/11proteins completely prevented receptor signaling to ERK1/2. By contrast, the recruitment of arrestin 3, receptor internalization, and activation of Akt were regulated by mFFA4 phosphorylation. The analysis of mFFA4 phosphorylation-dependent signaling was extended further by selective mutations of the phosphoacceptor sites. Mutations within cluster 2 did not affect agonist activation of Akt but instead significantly compromised receptor internalization and arrestin 3 recruitment. Distinctly, mutation of the phosphoacceptor sites within cluster 1 had no effect on receptor internalization and had a less extensive effect on arrestin 3 recruitment but significantly uncoupled the receptor from Akt activation. These unique observations define differential effects on signaling mediated by phosphorylation at distinct locations. This hallmark feature supports the possibility that the signaling outcome of mFFA4 activation can be determined by the pattern of phosphorylation (phosphorylation barcode) at the C terminus of the receptor.
Collapse
Affiliation(s)
- Rudi Prihandoko
- Medical Research Council Toxicology Unit, University of Leicester, Leicester, United Kingdom (R.P., A.J.B., A.B.T.); Molecular Pharmacology Group, Institute of Molecular, Cell, and Systems Biology (E.A.-C., B.D.H., G.M.), and Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary, and Life Sciences (A.M.M.), University of Glasgow, Glasgow, United Kingdom; and Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, Odense, Denmark (T.U.)
| | - Elisa Alvarez-Curto
- Medical Research Council Toxicology Unit, University of Leicester, Leicester, United Kingdom (R.P., A.J.B., A.B.T.); Molecular Pharmacology Group, Institute of Molecular, Cell, and Systems Biology (E.A.-C., B.D.H., G.M.), and Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary, and Life Sciences (A.M.M.), University of Glasgow, Glasgow, United Kingdom; and Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, Odense, Denmark (T.U.)
| | - Brian D Hudson
- Medical Research Council Toxicology Unit, University of Leicester, Leicester, United Kingdom (R.P., A.J.B., A.B.T.); Molecular Pharmacology Group, Institute of Molecular, Cell, and Systems Biology (E.A.-C., B.D.H., G.M.), and Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary, and Life Sciences (A.M.M.), University of Glasgow, Glasgow, United Kingdom; and Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, Odense, Denmark (T.U.)
| | - Adrian J Butcher
- Medical Research Council Toxicology Unit, University of Leicester, Leicester, United Kingdom (R.P., A.J.B., A.B.T.); Molecular Pharmacology Group, Institute of Molecular, Cell, and Systems Biology (E.A.-C., B.D.H., G.M.), and Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary, and Life Sciences (A.M.M.), University of Glasgow, Glasgow, United Kingdom; and Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, Odense, Denmark (T.U.)
| | - Trond Ulven
- Medical Research Council Toxicology Unit, University of Leicester, Leicester, United Kingdom (R.P., A.J.B., A.B.T.); Molecular Pharmacology Group, Institute of Molecular, Cell, and Systems Biology (E.A.-C., B.D.H., G.M.), and Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary, and Life Sciences (A.M.M.), University of Glasgow, Glasgow, United Kingdom; and Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, Odense, Denmark (T.U.)
| | - Ashley M Miller
- Medical Research Council Toxicology Unit, University of Leicester, Leicester, United Kingdom (R.P., A.J.B., A.B.T.); Molecular Pharmacology Group, Institute of Molecular, Cell, and Systems Biology (E.A.-C., B.D.H., G.M.), and Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary, and Life Sciences (A.M.M.), University of Glasgow, Glasgow, United Kingdom; and Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, Odense, Denmark (T.U.)
| | - Andrew B Tobin
- Medical Research Council Toxicology Unit, University of Leicester, Leicester, United Kingdom (R.P., A.J.B., A.B.T.); Molecular Pharmacology Group, Institute of Molecular, Cell, and Systems Biology (E.A.-C., B.D.H., G.M.), and Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary, and Life Sciences (A.M.M.), University of Glasgow, Glasgow, United Kingdom; and Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, Odense, Denmark (T.U.)
| | - Graeme Milligan
- Medical Research Council Toxicology Unit, University of Leicester, Leicester, United Kingdom (R.P., A.J.B., A.B.T.); Molecular Pharmacology Group, Institute of Molecular, Cell, and Systems Biology (E.A.-C., B.D.H., G.M.), and Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary, and Life Sciences (A.M.M.), University of Glasgow, Glasgow, United Kingdom; and Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, Odense, Denmark (T.U.)
| |
Collapse
|
20
|
Cianfrocca R, Tocci P, Semprucci E, Spinella F, Di Castro V, Bagnato A, Rosanò L. β-Arrestin 1 is required for endothelin-1-induced NF-κB activation in ovarian cancer cells. Life Sci 2014; 118:179-84. [DOI: 10.1016/j.lfs.2014.01.078] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 01/20/2014] [Accepted: 01/30/2014] [Indexed: 12/26/2022]
|
21
|
Hsieh WT, Yeh WL, Cheng RY, Lin C, Tsai CF, Huang BR, Wu CYJ, Lin HY, Huang SS, Lu DY. Exogenous endothelin-1 induces cell migration and matrix metalloproteinase expression in U251 human glioblastoma multiforme. J Neurooncol 2014; 118:257-269. [PMID: 24756349 DOI: 10.1007/s11060-014-1442-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 04/09/2014] [Indexed: 10/25/2022]
Abstract
Glioblastoma multiforme (GBM) is the most common and lethal type of primary brain tumor characterized by its rapid infiltration to surrounding tissues during the early stages. The fast spreading of GBM obscures the initiation of the tumor mass making the treatment outcome undesirable. Endothelin-1 is known as a secretory protein presented in various types of brain cells, which has been indicated as a factor for cancer pathology. The aim of the present study was to investigate the molecular mechanism of cell migration in GBM. We found that various malignant glioma cells expressed higher amounts of endothelin-1, ETA, and ETB receptors than nonmalignant human astrocytes. The application of endothelin-1 enhanced the migratory activity in human U251 glioma cells corresponding to increased expression of matrix metalloproteinase (MMP)-9 and MMP-13. The endothelin-1-induced cell migration was attenuated by MMP-9 and MMP-13 inhibitors and inhibitors of mitogen-activated protein (MAP) kinase and PI3 kinase/Akt. Furthermore, the elevated levels of phosphate c-Jun accumulation in the nucleus and activator protein-1 (AP-1)-DNA binding activity were also found in endothelin-1 treated glioma cells. In migration-prone sublines, cells with greater migration ability showed higher endothelin-1, ETB receptor, and MMP expressions. These results indicate that endothelin-1 activates MAP kinase and AP-1 signaling, resulting in enhanced MMP-9 and MMP-13 expressions and cell migration in GBM.
Collapse
Affiliation(s)
- Wen-Tsong Hsieh
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Wei-Lan Yeh
- Department of Cell and Tissue Engineering and Department of Medical Research, Changhua Christian Hospital, Changhua, Taiwan
| | - Ruo-Yuo Cheng
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Chingju Lin
- Department of Physiology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Cheng-Fang Tsai
- Department of Biotechnology, Asia University, Taichung, Taiwan
| | - Bor-Ren Huang
- Department of Neurosurgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan
| | - Caren Yu-Ju Wu
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Hsiao-Yun Lin
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Shiang-Suo Huang
- Department of Pharmacology and Institute of Medicine, College of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Dah-Yuu Lu
- Graduate Institute of Neural and Cognitive Sciences, China Medical University, No. 91 Hsueh-Shih Road, Taichung, Taiwan.
| |
Collapse
|
22
|
Endothelin-1 promotes vascular endothelial growth factor-dependent angiogenesis in human chondrosarcoma cells. Oncogene 2013; 33:1725-35. [DOI: 10.1038/onc.2013.109] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 01/25/2013] [Accepted: 02/07/2013] [Indexed: 01/01/2023]
|
23
|
Singh S, Bora-Singhal N, Kroeger J, Laklai H, Chellappan SP. βArrestin-1 and Mcl-1 modulate self-renewal growth of cancer stem-like side-population cells in non-small cell lung cancer. PLoS One 2013; 8:e55982. [PMID: 23418490 PMCID: PMC3572139 DOI: 10.1371/journal.pone.0055982] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 01/04/2013] [Indexed: 12/15/2022] Open
Abstract
Side population (SP) cells have been reported to have properties of cancer stem-like cells (CSCs) in non-small cell lung carcinoma (NSCLC), yet their molecular features have not been fully elucidated. Here we show that, NSCLC-SP cells were enriched in G0/G1 phase of cell cycle, had higher aldehyde dehydrogenase activity as well as higher clonogenic and self-renewing ability compared to main population (MP) cells. Interestingly, SP cells were also able to trans-differentiate into angiogenic tubules in vitro and were highly tumorigenic as compared to MP cells. SP-derived tumors demonstrated the intratumoral heterogeneity comprising of both SP and MP cells, suggesting the self-renewal and differentiation ability of SP cells are manifested in vivo as well. βArrestin-1 (βArr1) is involved in the progression of various cancers including NSCLCs and we find that depletion of βArr1 significantly blocked the SP phenotype; whereas depletion of βArr2 had relatively minor effects. Ectopic expression of βArr1 resulted in increased SP frequency and ABCG2 expression while abrogation of βArr1 expression suppressed the self-renewal growth and expansion of A549 cells. Anti-apoptotic protein Mcl-1 is known to be one of the key regulators of self-renewal of tissue stem cells and is thought to contribute to survival of NSCLC cells. Our experiments show that higher levels of Mcl-1 were expressed in SP cells compared to MP cells at both transcriptional and translational levels. In addition, Obatoclax, a pharmacological inhibitor of Mcl-1, could effectively prevent the self-renewal of both EGFR-inhibitor sensitive and resistant NSCLC cells. In conclusion, our findings suggest that βArr1 and Mcl-1 are involved in the self-renewal and expansion of NSCLC-CSCs and are potential targets for anti-cancer therapy.
Collapse
Affiliation(s)
- Sandeep Singh
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
| | - Namrata Bora-Singhal
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
| | - Jodi Kroeger
- Flow Cytomerty Core Facility, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
| | - Hanane Laklai
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
| | - Srikumar P. Chellappan
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
- * E-mail:
| |
Collapse
|
24
|
Rosanò L, Cianfrocca R, Tocci P, Spinella F, Di Castro V, Spadaro F, Salvati E, Biroccio AM, Natali PG, Bagnato A. β-arrestin-1 is a nuclear transcriptional regulator of endothelin-1-induced β-catenin signaling. Oncogene 2012. [DOI: 10.1038/onc.2012.527] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
25
|
Abstract
Wnt signalling pathways have been shown to play key roles in both normal development and tumorigenesis. Progression of many human cancers is associated with defined mutations in Wnt pathway components that result in dysregulated β-catenin-mediated gene transcription. Although Wnt pathway mutations are rare in epithelial ovarian cancer (with the exception of the endometrioid histotype), accumulating evidence supports a role for Wnt signalling in ovarian tumorigenesis in the absence of genetic mutations. The present review summarizes evidence in support of activated Wnt signalling in ovarian tumours and discusses alternative mechanisms for Wnt pathway activation in the ovarian tumour microenvironment.
Collapse
|