1
|
Bubon T, Azizi K. Effects of Alkali-Metal Counterions on the Vibrational Dynamics of the DNA Hydration Shell. J Phys Chem B 2025; 129:28-40. [PMID: 39692183 DOI: 10.1021/acs.jpcb.4c04449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
The effects of alkali-metal ions (Li+, Na+, K+, Rb+, and Cs+) on the vibrational dynamics of the DNA ion-hydration shell were studied through classical molecular dynamics simulations. As a result, the vibrational spectra of the DNA-water-salt systems were calculated within the framework of two approaches, using dipole-dipole and velocity-velocity autocorrelation functions. We dissect the effect of the individual compartments of the DNA double helix (minor groove, major groove, and phosphate groups) on the behavior of the systems. The obtained spectra have a different shape in the case of structure-making and structure-breaking ions. This difference becomes more prominent for the ions interacting with DNA, especially in the case of structure-breaking ions in the minor groove of the double helix. The obtained spectra of DNA do not show a significant effect of counterion type, except for Li+, which influences the vibrational modes of the DNA phosphates. The analysis of the spectra of water vibrations around ions revealed an isosbestic point at ∼70 cm-1, which appears as a response to the confinement induced by interaction with the DNA double helix and counterions. The obtained results are important for understanding the structural and dynamical organization of the DNA ion-hydration shell.
Collapse
Affiliation(s)
- Tetiana Bubon
- Bogolyubov Institute for Theoretical Physics of the National Academy of Sciences of Ukraine, 14-b Metrolohichna Str., Kyiv 03143, Ukraine
- The Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, Trieste 34151, Italy
| | - Khatereh Azizi
- The Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, Trieste 34151, Italy
| |
Collapse
|
2
|
Sosorev AY, Parashchuk OD, Chicherin IV, Trubitsyn AA, Trukhanov VA, Baleva MV, Piunova UE, Kharlanov OG, Kamenski P, Paraschuk DY. Probing of nucleic acid compaction using low-frequency Raman spectroscopy. Phys Chem Chem Phys 2024; 26:17467-17475. [PMID: 38864440 DOI: 10.1039/d3cp05857c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Compaction of nucleic acids, namely DNA and RNA, determines their functions and involvement in vital cell processes including transcription, replication, DNA repair and translation. However, experimental probing of the compaction of nucleic acids is not straightforward. In this study, we suggest an approach for this probing using low-frequency Raman spectroscopy. Specifically, we show theoretically, computationally and experimentally the quantifiable correlation between the low-frequency Raman intensity from nucleic acids, magnitude of thermal fluctuations of atomic positions, and the compaction state of biomolecules. Noteworthily, we highlight that the LF Raman intensity differs by an order of magnitude for different samples of DNA, and even for the same sample in the course of long-term storage. The feasibility of the approach is further shown by assessment of the DNA compaction in the nuclei of plant cells. We anticipate that the suggested approach will enlighten compaction of nucleic acids and their dynamics during the key processes of the cell life cycle and under various factors, facilitating advancement of molecular biology and medicine.
Collapse
Affiliation(s)
- Andrey Yu Sosorev
- Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory 1/62, Moscow 119991, Russia.
- Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences, Profsoyuznaya 70, Moscow 117393, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Ulitsa Miklukho-Maklaya, 16/10, Moscow 117997, Russia
| | - Olga D Parashchuk
- Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory 1/62, Moscow 119991, Russia.
| | - Ivan V Chicherin
- Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory 1/12, Moscow 119234, Russia
| | - Artem A Trubitsyn
- Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory 1/62, Moscow 119991, Russia.
| | - Vasiliy A Trukhanov
- Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory 1/62, Moscow 119991, Russia.
| | - Maria V Baleva
- Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory 1/12, Moscow 119234, Russia
| | - Ulyana E Piunova
- Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory 1/12, Moscow 119234, Russia
| | - Oleg G Kharlanov
- Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory 1/62, Moscow 119991, Russia.
| | - Piotr Kamenski
- Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory 1/12, Moscow 119234, Russia
| | - Dmitry Yu Paraschuk
- Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory 1/62, Moscow 119991, Russia.
| |
Collapse
|
3
|
Bubon T, Zdorevskyi O, Perepelytsya S. Molecular dynamics study of collective water vibrations in a DNA hydration shell. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2023; 52:69-79. [PMID: 36920489 DOI: 10.1007/s00249-023-01638-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/16/2023] [Accepted: 02/18/2023] [Indexed: 03/16/2023]
Abstract
The structure of DNA double helix is stabilized by water molecules and metal counterions that form the ion-hydration shell around the macromolecule. Understanding the role of the ion-hydration shell in the physical mechanisms of the biological functioning of DNA requires detailed studies of its structure and dynamics at the atomistic level. In the present work, the study of collective vibrations of water molecules around the DNA double helix was performed within the framework of classical all-atom molecular dynamics methods. Calculating the vibrational density of states, the vibrations of water molecules in the low-frequency spectra ranged from [Formula: see text]30 to [Formula: see text]300 [Formula: see text] were analyzed for the case of different regions of the DNA double helix (minor groove, major groove, and phosphate groups). The analysis revealed significant differences in the collective vibrations behavior of water molecules in the DNA hydration shell, compared to the vibrations of bulk water. All low-frequency modes of the DNA ion-hydration shell are shifted by about 15-20 [Formula: see text] towards higher frequencies, which is more significant for water molecules in the minor groove region of the double helix. The interactions of water molecules with the atoms of the macromolecule induce intensity decrease of the mode of hydrogen-bond symmetrical stretching near 150 [Formula: see text], leading to the disappearance of this mode in the DNA spectra. The obtained results can provide an interpretation of the experimental data for DNA low-frequency spectra and may be important for the understanding of the processes of indirect protein-nucleic recognition.
Collapse
Affiliation(s)
- Tetiana Bubon
- Bogolyubov Institute for Theoretical Physics of the National Academy of Sciences of Ukraine, 14b, Metrolohichna Str., Kyiv, 03143, Ukraine.
- Condensed Matter and Statistical Physics, Abdus Salam International Centre for Theoretical Physics, Strada Costiera, 11, Trieste, 34151, Italy.
| | - Oleksii Zdorevskyi
- Department of Physics, University of Helsinki, Gustaf Hällströmin katu 2, Helsinki, 00014, Finland
| | - Sergiy Perepelytsya
- Bogolyubov Institute for Theoretical Physics of the National Academy of Sciences of Ukraine, 14b, Metrolohichna Str., Kyiv, 03143, Ukraine
| |
Collapse
|
4
|
Zdorevskyi OO, Perepelytsya SM. Dynamics of K + counterions around DNA double helix in the external electric field: A molecular dynamics study. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2020; 43:77. [PMID: 33306165 DOI: 10.1140/epje/i2020-12000-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 11/05/2020] [Indexed: 06/12/2023]
Abstract
The structure of DNA double helix is stabilized by metal counterions condensed to a diffuse layer around the macromolecule. The dynamics of counterions in real conditions is governed by the electric fields from DNA and other biological macromolecules. In the present work the molecular dynamics study was performed for the system of DNA double helix with neutralizing K+ counterions and for the system of KCl salt solution in an external electric field of different strength (up to 32mV/Å). The analysis of ionic conductivities of these systems has shown that the counterions around the DNA double helix are slowed down compared with the KCl salt solution. The calculated values of ion mobility are within (0.05-0.4)mS/cm depending on the orientation of the external electric field relatively to the double helix. Under the electric field parallel to the macromolecule K+ counterions move along the grooves of the double helix staying longer in the places with narrower minor groove. Under the electric field perpendicular to the macromolecule the dynamics of counterions is less affected by DNA atoms, and starting with the electric field values about 30mV/Å the double helix undergoes a phase transition from a double-stranded to a single-strand state.
Collapse
Affiliation(s)
- O O Zdorevskyi
- Bogolyubov Institute for Theoretical Physics of the National Academy of Sciences of Ukraine, 14-b, Metrolohichna Str., 03143, Kiev, Ukraine.
| | - S M Perepelytsya
- Bogolyubov Institute for Theoretical Physics of the National Academy of Sciences of Ukraine, 14-b, Metrolohichna Str., 03143, Kiev, Ukraine
| |
Collapse
|
5
|
Perepelytsya S, Uličný J, Laaksonen A, Mocci F. Pattern preferences of DNA nucleotide motifs by polyamines putrescine2+, spermidine3+ and spermine4. Nucleic Acids Res 2020; 47:6084-6097. [PMID: 31114917 PMCID: PMC6614828 DOI: 10.1093/nar/gkz434] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 04/10/2019] [Accepted: 05/08/2019] [Indexed: 12/25/2022] Open
Abstract
The interactions of natural polyamines (putrescine2+, spermidine3+ and spermine4+) with DNA double helix are studied to characterize their nucleotide sequence pattern preference. Atomistic Molecular Dynamics simulations have been carried out for three systems consisting of the same DNA fragment d(CGCGAATTCGCGAATTCGCG) with different polyamines. The results show that polyamine molecules are localized with well-recognized patterns along the double helix with different residence times. We observed a clear hierarchy in the residence times of the polyamines, with the longest residence time (ca 100ns) in the minor groove. The analysis of the sequence dependence shows that polyamine molecules prefer the A-tract regions of the minor groove - in its narrowest part. The preferable localization of putrescine2+, spermidine3+ and spermine4+ in the minor groove with A-tract motifs is correlated with modulation of the groove width by a specific nucleotide sequences. We did develop a theoretical model pointing to the electrostatic interactions as the main driving force in this phenomenon, making it even more prominent for polyamines with higher charges. The results of the study explain the specificity of polyamine interactions with A-tract region of the DNA double helix which is also observed in experiments.
Collapse
Affiliation(s)
- Sergiy Perepelytsya
- Bogolyubov Institute for Theoretical Physics of the National Academy of Sciences of Ukraine, 03143 Kyiv, Ukraine.,Department of Theoretical and Mathematical Physics, Kyiv Academic University, 03142 Kyiv, Ukraine
| | - Jozef Uličný
- Department of Biophysics, Institute of Physics, P. J. Šafárik University, 041 54 Košice, Slovakia
| | - Aatto Laaksonen
- State Key Laboratory of Materials-Oriented and Chemical Engineering, Nanjing Tech University, 210009 Nanjing, China.,Division of Physical Chemistry, Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, 10691 Stockholm, Sweden.,Centre of Advanced Research in Bionanoconjugates and Biopolymers, Petru Poni Institute of Macromolecular Chemistry, Iasi, 700487, Romania
| | - Francesca Mocci
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, Petru Poni Institute of Macromolecular Chemistry, Iasi, 700487, Romania.,Department of Chemical and Geological Sciences, University of Cagliari, I-09042 Monserrato, Italy
| |
Collapse
|
6
|
Hydration of counterions interacting with DNA double helix: a molecular dynamics study. J Mol Model 2018; 24:171. [DOI: 10.1007/s00894-018-3704-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 06/06/2018] [Indexed: 12/12/2022]
|
7
|
Kolev SK, Petkov PS, Rangelov MA, Trifonov DV, Milenov TI, Vayssilov GN. Interaction of Na+, K+, Mg2+ and Ca2+ counter cations with RNA. Metallomics 2018; 10:659-678. [DOI: 10.1039/c8mt00043c] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Data on the location of alkaline and alkaline earth ions at RNA from crystallography, spectroscopy and computational modeling are reviewed.
Collapse
Affiliation(s)
- Stefan K. Kolev
- Acad. E. Djakov Institute of Electronics
- Bulgarian Academy of Sciences
- 1784 Sofia
- Bulgaria
| | - Petko St. Petkov
- Faculty of Chemistry and Pharmacy
- University of Sofia
- 1126 Sofia
- Bulgaria
| | - Miroslav A. Rangelov
- Laboratory of BioCatalysis
- Institute of Organic Chemistry
- Bulgarian Academy of Sciences
- 1113 Sofia
- Bulgaria
| | | | - Teodor I. Milenov
- Acad. E. Djakov Institute of Electronics
- Bulgarian Academy of Sciences
- 1784 Sofia
- Bulgaria
| | | |
Collapse
|
8
|
El Khoury Y, Hellwig P. Far infrared spectroscopy of hydrogen bonding collective motions in complex molecular systems. Chem Commun (Camb) 2017; 53:8389-8399. [DOI: 10.1039/c7cc03496b] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Far infrared spectroscopy as a tool for the study of inter and intramolecular interactions in complex molecular structures.
Collapse
Affiliation(s)
- Youssef El Khoury
- Laboratoire de Bioélectrochimie et Spectroscopie
- UMR 7140
- CMC
- Université de Strasbourg CNRS
- Strasbourg
| | - Petra Hellwig
- Laboratoire de Bioélectrochimie et Spectroscopie
- UMR 7140
- CMC
- Université de Strasbourg CNRS
- Strasbourg
| |
Collapse
|
9
|
Kolev S, Petkov PS, Rangelov M, Vayssilov GN. Ab initio molecular dynamics of Na⁺ and Mg²⁺ countercations at the backbone of RNA in water solution. ACS Chem Biol 2013; 8:1576-89. [PMID: 23642311 DOI: 10.1021/cb300463h] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The interactions between sodium or magnesium ions and phosphate groups of the RNA backbone represented as dinucleotide fragments in water solution have been studied using ab initio Born-Oppenheimer molecular dynamics. All systems have been simulated at 300 and 320 K. Sodium ions have mobility higher than that of the magnesium ions and readily change their position with respect to the phosphate groups, from directly bonded to completely solvated state, with a rough estimate of the lifetime of bonded Na(+) of about 20-30 ps. The coordination number of the sodium ions frequently changes in irregular intervals ranging from several femtoseconds to about 10 ps with the most frequently encountered coordination number five, followed by six. The magnesium ion is stable both as directly bonded to an oxygen atom from the phosphate group and completely solvated by water. In both states the Mg(2+) ion has exactly six oxygen atoms in the first coordination shell; moreover, during the whole simulation of more than 100 ps no exchange of ligand in the first coordination shells has been observed. Solvation of the terminal phosphate oxygen atoms by water molecules forming hydrogen bonds in different locations of the ions is also discussed. The stability of the system containing sodium ions essentially does not depend on the position of the ions with respect to the phosphate groups.
Collapse
Affiliation(s)
- Stefan Kolev
- Faculty of Chemistry and Pharmacy, University of Sofia, Boulevard James Bouchier 1, 1126 Sofia, Bulgaria
| | - Petko St. Petkov
- Faculty of Chemistry and Pharmacy, University of Sofia, Boulevard James Bouchier 1, 1126 Sofia, Bulgaria
| | - Miroslav Rangelov
- Laboratory of BioCatalysis, Institute of Organic Chemistry, Bulgarian Academy of Sciences, Str. Acad. G. Bontchev, Bl. 9, 1113 Sofia, Bulgaria
| | - Georgi N. Vayssilov
- Faculty of Chemistry and Pharmacy, University of Sofia, Boulevard James Bouchier 1, 1126 Sofia, Bulgaria
| |
Collapse
|
10
|
Perepelytsya SM, Volkov SN. Vibrations of ordered counterions around left- and right-handed DNA double helixes. ACTA ACUST UNITED AC 2013. [DOI: 10.1088/1742-6596/438/1/012013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
11
|
Brindley AJ, Martin RW. Effect of divalent cations on DMPC/DHPC bicelle formation and alignment. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:7788-7796. [PMID: 22548306 DOI: 10.1021/la300885u] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Many important classes of biomolecules require divalent cations for optimal activity, making these ions essential for biologically relevant structural studies. Bicelle mixtures composed of short-chain and long-chain lipids are often used in solution- and solid-state NMR structure determination; however, the phase diagrams of these useful orienting media and membrane mimetics are sensitive to other solution components. Therefore, we have investigated the effect of varying concentrations of four divalent cations, Ca(2+), Mg(2+), Zn(2+), and Cd(2+), on cholesterol sulfate-stabilized DMPC/DHPC bicelles. We found that low concentrations of all the divalent ions are tolerated with minimal perturbation. At higher concentrations Zn(2+) and Cd(2+) disrupt the magnetically aligned phase while Ca(2+) and Mg(2+) produce more strongly oriented phases. This result indicates that divalent cations are not only required to maintain the biological activity of proteins and nucleic acids; they may also be used to manipulate the behavior of the magnetically aligned phase.
Collapse
Affiliation(s)
- Amanda J Brindley
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, USA
| | | |
Collapse
|
12
|
|