1
|
Rosselló JL, Alomar ML, Morro A, Oliver A, Canals V. High-Density Liquid-State Machine Circuitry for Time-Series Forecasting. Int J Neural Syst 2016; 26:1550036. [DOI: 10.1142/s0129065715500367] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Spiking neural networks (SNN) are the last neural network generation that try to mimic the real behavior of biological neurons. Although most research in this area is done through software applications, it is in hardware implementations in which the intrinsic parallelism of these computing systems are more efficiently exploited. Liquid state machines (LSM) have arisen as a strategic technique to implement recurrent designs of SNN with a simple learning methodology. In this work, we show a new low-cost methodology to implement high-density LSM by using Boolean gates. The proposed method is based on the use of probabilistic computing concepts to reduce hardware requirements, thus considerably increasing the neuron count per chip. The result is a highly functional system that is applied to high-speed time series forecasting.
Collapse
Affiliation(s)
- Josep L. Rosselló
- Electronics Engineering Group, Physics Department, Universitat de les Illes Balears, Mateu Orfila Building, Cra. Valldemossa km. 7.5, Palma de Mallorca, Balears 07122, Spain
| | - Miquel L. Alomar
- Electronics Engineering Group, Physics Department, Universitat de les Illes Balears, Mateu Orfila Building, Cra. Valldemossa km. 7.5, Palma de Mallorca, Balears 07122, Spain
| | - Antoni Morro
- Electronics Engineering Group, Physics Department, Universitat de les Illes Balears, Mateu Orfila Building, Cra. Valldemossa km. 7.5, Palma de Mallorca, Balears 07122, Spain
| | - Antoni Oliver
- Electronics Engineering Group, Physics Department, Universitat de les Illes Balears, Mateu Orfila Building, Cra. Valldemossa km. 7.5, Palma de Mallorca, Balears 07122, Spain
| | - Vincent Canals
- Electronics Engineering Group, Physics Department, Universitat de les Illes Balears, Mateu Orfila Building, Cra. Valldemossa km. 7.5, Palma de Mallorca, Balears 07122, Spain
| |
Collapse
|
2
|
Yaghouby F, O’Hara BF, Sunderam S. Unsupervised Estimation of Mouse Sleep Scores and Dynamics Using a Graphical Model of Electrophysiological Measurements. Int J Neural Syst 2016; 26:1650017. [DOI: 10.1142/s0129065716500179] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The proportion, number of bouts, and mean bout duration of different vigilance states (Wake, NREM, REM) are useful indices of dynamics in experimental sleep research. These metrics are estimated by first scoring state, sometimes using an algorithm, based on electrophysiological measurements such as the electroencephalogram (EEG) and electromyogram (EMG), and computing their values from the score sequence. Isolated errors in the scores can lead to large discrepancies in the estimated sleep metrics. But most algorithms score sleep by classifying the state from EEG/EMG features independently in each time epoch without considering the dynamics across epochs, which could provide contextual information. The objective here is to improve estimation of sleep metrics by fitting a probabilistic dynamical model to mouse EEG/EMG data and then predicting the metrics from the model parameters. Hidden Markov models (HMMs) with multivariate Gaussian observations and Markov state transitions were fitted to unlabeled 24-h EEG/EMG feature time series from 20 mice to model transitions between the latent vigilance states; a similar model with unbiased transition probabilities served as a reference. Sleep metrics predicted from the HMM parameters did not deviate significantly from manual estimates except for rapid eye movement sleep (REM) ([Formula: see text]; Wilcoxon signed-rank test). Changes in value from Light to Dark conditions correlated well with manually estimated differences (Spearman’s rho 0.43–0.84) except for REM. HMMs also scored vigilance state with over 90% accuracy. HMMs of EEG/EMG features can therefore characterize sleep dynamics from EEG/EMG measurements, a prerequisite for characterizing the effects of perturbation in sleep monitoring and control applications.
Collapse
Affiliation(s)
- Farid Yaghouby
- Department of Biomedical Engineering, University of Kentucky, Lexington, KY, USA
| | - Bruce F. O’Hara
- Department of Biology, University of Kentucky, Lexington, KY, USA
| | - Sridhar Sunderam
- Department of Biomedical Engineering, University of Kentucky, Lexington, KY, USA
| |
Collapse
|