1
|
Hu J, Chen C, Wu M, Zhang J, Meng F, Li T, Luo B. Assessing consciousness in acute coma using name-evoked responses. Brain Res Bull 2024; 218:111091. [PMID: 39368632 DOI: 10.1016/j.brainresbull.2024.111091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/14/2024] [Accepted: 09/28/2024] [Indexed: 10/07/2024]
Abstract
Detecting consciousness in clinically unresponsive patients remains a significant challenge. Existing studies demonstrate that electroencephalography (EEG) can detect brain responses in behaviorally unresponsive patients, indicating potential for consciousness detection. However, most of this evidence is based on chronic patients, and there is a lack of studies focusing on acute coma cases. This study aims to detect signs of residual consciousness in patients with acute coma by using bedside EEG and electromyography (EMG) during an auditory oddball paradigm. We recruited patients with acute brain injury (either traumatic brain injury or cardiac arrest) who were admitted to the intensive care unit within two weeks after injury, with a Glasgow Coma Scale (GCS) score of 8 or below. Auditory stimuli included the patients' own names and other common names (referred to as standard names), spoken by the patients' relatives, delivered under two conditions: passive listening (where patients were instructed that sounds would be played) and active listening (where patients were asked to move hands when heard their own names). Brain and muscle activity were recorded using EEG and EMG during the auditory paradigm. Event-related potentials (ERP) and EMG spectra were analyzed and compared between responses to the subject's own name and other standard names in both passive and active listening conditions. A total of 22 patients were included in the final analysis. Subjects exhibited enhanced ERP responses when exposed to their own names, particularly during the active listening task. Compared to standard names or passive listening, distinct differences in brain network connectivity and increased EMG responses were detected during active listening to their own names. These findings suggest the presence of residual consciousness, offering the potential for assessing consciousness in behaviorally unresponsive patients.
Collapse
Affiliation(s)
- Jun Hu
- Department of Neurology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| | - Chunyou Chen
- Department of Neurology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China; Department of Neurology, the First People's Hospital of Wenling,Wenling, Zhejiang 317500, China
| | - Min Wu
- FMRIB, Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Jingchen Zhang
- Department of Critical Care Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Fanxia Meng
- Department of Neurology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| | - Tong Li
- Department of Critical Care Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Benyan Luo
- Department of Neurology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China; The MOE Frontier Science Center for Brain Science and Brain-Machine Integration, Zhejiang University,Hangzhou 310003, China.
| |
Collapse
|
2
|
Raveendran S, Kenchaiah R, Kumar S, Sahoo J, Farsana MK, Chowdary Mundlamuri R, Bansal S, Binu VS, Ramakrishnan AG, Ramakrishnan S, Kala S. Variational mode decomposition-based EEG analysis for the classification of disorders of consciousness. Front Neurosci 2024; 18:1340528. [PMID: 38379759 PMCID: PMC10876804 DOI: 10.3389/fnins.2024.1340528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 01/22/2024] [Indexed: 02/22/2024] Open
Abstract
Aberrant alterations in any of the two dimensions of consciousness, namely awareness and arousal, can lead to the emergence of disorders of consciousness (DOC). The development of DOC may arise from more severe or targeted lesions in the brain, resulting in widespread functional abnormalities. However, when it comes to classifying patients with disorders of consciousness, particularly utilizing resting-state electroencephalogram (EEG) signals through machine learning methods, several challenges surface. The non-stationarity and intricacy of EEG data present obstacles in understanding neuronal activities and achieving precise classification. To address these challenges, this study proposes variational mode decomposition (VMD) of EEG before feature extraction along with machine learning models. By decomposing preprocessed EEG signals into specified modes using VMD, features such as sample entropy, spectral entropy, kurtosis, and skewness are extracted across these modes. The study compares the performance of the features extracted from VMD-based approach with the frequency band-based approach and also the approach with features extracted from raw-EEG. The classification process involves binary classification between unresponsive wakefulness syndrome (UWS) and the minimally conscious state (MCS), as well as multi-class classification (coma vs. UWS vs. MCS). Kruskal-Wallis test was applied to determine the statistical significance of the features and features with a significance of p < 0.05 were chosen for a second round of classification experiments. Results indicate that the VMD-based features outperform the features of other two approaches, with the ensemble bagged tree (EBT) achieving the highest accuracy of 80.5% for multi-class classification (the best in the literature) and 86.7% for binary classification. This approach underscores the potential of integrating advanced signal processing techniques and machine learning in improving the classification of patients with disorders of consciousness, thereby enhancing patient care and facilitating informed treatment decision-making.
Collapse
Affiliation(s)
- Sreelakshmi Raveendran
- Department of Electronics and Communication Engineering, Indian Institute of Information Technology, Kottayam, Kerala, India
| | | | - Santhos Kumar
- Department of Electronics and Communication Engineering, Indian Institute of Information Technology, Kottayam, Kerala, India
| | - Jayakrushna Sahoo
- Department of Computer Science and Engineering, Indian Institute of Information Technology, Kottayam, Kerala, India
| | - M. K. Farsana
- Department of Neurology, NIMHANS, Bangalore, Karnataka, India
| | | | - Sonia Bansal
- Department of Neuroanaesthesia and Neurocritical Care, NIMHANS, Bangalore, Karnataka, India
| | - V. S. Binu
- Department of Biostatistics, NIMHANS, Bangalore, Karnataka, India
| | - A. G. Ramakrishnan
- Department of Electrical Engineering and Centre for Neuroscience, Indian Institute of Science, Bangalore, Karnataka, India
| | | | - S. Kala
- Department of Electronics and Communication Engineering, Indian Institute of Information Technology, Kottayam, Kerala, India
| |
Collapse
|
3
|
Rafiei MH, Gauthier LV, Adeli H, Takabi D. Self-Supervised Learning for Electroencephalography. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2024; 35:1457-1471. [PMID: 35867362 DOI: 10.1109/tnnls.2022.3190448] [Citation(s) in RCA: 48] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Decades of research have shown machine learning superiority in discovering highly nonlinear patterns embedded in electroencephalography (EEG) records compared with conventional statistical techniques. However, even the most advanced machine learning techniques require relatively large, labeled EEG repositories. EEG data collection and labeling are costly. Moreover, combining available datasets to achieve a large data volume is usually infeasible due to inconsistent experimental paradigms across trials. Self-supervised learning (SSL) solves these challenges because it enables learning from EEG records across trials with variable experimental paradigms, even when the trials explore different phenomena. It aggregates multiple EEG repositories to increase accuracy, reduce bias, and mitigate overfitting in machine learning training. In addition, SSL could be employed in situations where there is limited labeled training data, and manual labeling is costly. This article: 1) provides a brief introduction to SSL; 2) describes some SSL techniques employed in recent studies, including EEG; 3) proposes current and potential SSL techniques for future investigations in EEG studies; 4) discusses the cons and pros of different SSL techniques; and 5) proposes holistic implementation tips and potential future directions for EEG SSL practices.
Collapse
|
4
|
Plosnić G, Raguž M, Deletis V, Chudy D. Dysfunctional connectivity as a neurophysiologic mechanism of disorders of consciousness: a systematic review. Front Neurosci 2023; 17:1166187. [PMID: 37539385 PMCID: PMC10394244 DOI: 10.3389/fnins.2023.1166187] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 07/05/2023] [Indexed: 08/05/2023] Open
Abstract
Introduction Disorders of consciousness (DOC) has been an object of numbers of research regarding the diagnosis, treatment and prognosis in last few decades. We believe that the DOC could be considered as a disconnection syndrome, although the exact mechanisms are not entirely understood. Moreover, different conceptual frameworks highly influence results interpretation. The aim of this systematic review is to assess the current knowledge regarding neurophysiological mechanisms of DOC and to establish possible influence on future clinical implications and usage. Methods We have conducted a systematic review according to PRISMA guidelines through PubMed and Cochrane databases, with studies being selected for inclusion via a set inclusion and exclusion criteria. Results Eighty-nine studies were included in this systematic review according to the selected criteria. This includes case studies, randomized controlled trials, controlled clinical trials, and observational studies with no control arms. The total number of DOC patients encompassed in the studies cited in this review is 1,533. Conclusion Connectomics and network neuroscience offer quantitative frameworks for analysing dynamic brain connectivity. Functional MRI studies show evidence of abnormal connectivity patterns and whole-brain topological reorganization, primarily affecting sensory-related resting state networks (RSNs), confirmed by EEG studies. As previously described, DOC patients are identified by diminished global information processing, i.e., network integration and increased local information processing, i.e., network segregation. Further studies using effective connectivity measurement tools instead of functional connectivity as well as the standardization of the study process are needed.
Collapse
Affiliation(s)
- Gabriela Plosnić
- Department of Pediatrics, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Marina Raguž
- Department of Neurosurgery, Dubrava University Hospital, Zagreb, Croatia
- School of Medicine, Catholic University of Croatia, Zagreb, Croatia
| | - Vedran Deletis
- Albert Einstein College of Medicine, New York, NY, United States
| | - Darko Chudy
- Department of Neurosurgery, Dubrava University Hospital, Zagreb, Croatia
- School of Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
5
|
Karaaslanli A, Ortiz-Bouza M, Munia TTK, Aviyente S. Community detection in multi-frequency EEG networks. Sci Rep 2023; 13:8114. [PMID: 37208422 DOI: 10.1038/s41598-023-35232-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 05/15/2023] [Indexed: 05/21/2023] Open
Abstract
Functional connectivity networks of the human brain are commonly studied using tools from complex network theory. Existing methods focus on functional connectivity within a single frequency band. However, it is well-known that higher order brain functions rely on the integration of information across oscillations at different frequencies. Therefore, there is a need to study these cross-frequency interactions. In this paper, we use multilayer networks to model functional connectivity across multiple frequencies, where each layer corresponds to a different frequency band. We then introduce the multilayer modularity metric to develop a multilayer community detection algorithm. The proposed approach is applied to electroencephalogram (EEG) data collected during a study of error monitoring in the human brain. The differences between the community structures within and across different frequency bands for two response types, i.e. error and correct, are studied. The results indicate that following an error response, the brain organizes itself to form communities across frequencies, in particular between theta and gamma bands while a similar cross-frequency community formation is not observed following the correct response.
Collapse
Affiliation(s)
- Abdullah Karaaslanli
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI, 48824, USA.
| | - Meiby Ortiz-Bouza
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Tamanna T K Munia
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Selin Aviyente
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
6
|
Altıntop ÇG, Latifoğlu F, Akın AK, Ülgey A. Quantitative Electroencephalography Analysis for Improved Assessment of Consciousness Levels in Deep Coma Patients Using a Proposed Stimulus Stage. Diagnostics (Basel) 2023; 13:diagnostics13081383. [PMID: 37189484 DOI: 10.3390/diagnostics13081383] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/06/2023] [Accepted: 04/06/2023] [Indexed: 05/17/2023] Open
Abstract
"Coma" is defined as an inability to obey commands, to speak, or to open the eyes. So, a coma is a state of unarousable unconsciousness. In a clinical setting, the ability to respond to a command is often used to infer consciousness. Evaluation of the patient's level of consciousness (LeOC) is important for neurological evaluation. The Glasgow Coma Scale (GCS) is the most widely used and popular scoring system for neurological evaluation and is used to assess a patient's level of consciousness. The aim of this study is the evaluation of GCSs with an objective approach based on numerical results. So, EEG signals were recorded from 39 patients in a coma state with a new procedure proposed by us in a deep coma state (GCS: between 3 and 8). The EEG signals were divided into four sub-bands as alpha, beta, delta, and theta, and their power spectral density was calculated. As a result of power spectral analysis, 10 different features were extracted from EEG signals in the time and frequency domains. The features were statistically analyzed to differentiate the different LeOC and to relate with the GCS. Additionally, some machine learning algorithms have been used to measure the performance of the features for distinguishing patients with different GCSs in a deep coma. This study demonstrated that GCS 3 and GCS 8 patients were classified from other levels of consciousness in terms of decreased theta activity. To the best of our knowledge, this is the first study to classify patients in a deep coma (GCS between 3 and 8) with 96.44% classification performance.
Collapse
Affiliation(s)
| | - Fatma Latifoğlu
- Department of Biomedical Engineering, Erciyes University, Kayseri 38039, Turkey
| | - Aynur Karayol Akın
- Department of Anesthesiology and Reanimation, Erciyes University, Kayseri 38039, Turkey
| | - Ayşe Ülgey
- Department of Anesthesiology and Reanimation, Erciyes University, Kayseri 38039, Turkey
| |
Collapse
|
7
|
Dimitriadis SI. Assessing the Repeatability of Multi-Frequency Multi-Layer Brain Network Topologies Across Alternative Researcher's Choice Paths. Neuroinformatics 2023; 21:71-88. [PMID: 36372844 DOI: 10.1007/s12021-022-09610-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2022] [Indexed: 11/15/2022]
Abstract
There is a growing interest in the neuroscience community on the advantages of multilayer functional brain networks. Researchers usually treated different frequencies separately at distinct functional brain networks. However, there is strong evidence that these networks share complementary information while their interdependencies could reveal novel findings. For this purpose, neuroscientists adopt multilayer networks, which can be described mathematically as an extension of trivial single-layer networks. Multilayer networks have become popular in neuroscience due to their advantage to integrate different sources of information. Here, Ι will focus on the multi-frequency multilayer functional connectivity analysis on resting-state fMRI (rs-fMRI) recordings. However, constructing a multilayer network depends on selecting multiple pre-processing steps that can affect the final network topology. Here, I analyzed the rs-fMRI dataset from a single human performing scanning over a period of 18 months (84 scans in total), and the rs-fMRI dataset containing 25 subjects with 3 repeat scans. I focused on assessing the reproducibility of multi-frequency multilayer topologies exploring the effect of two filtering methods for extracting frequencies from BOLD activity, three connectivity estimators, with or without a topological filtering scheme, and two spatial scales. Finally, I untangled specific combinations of researchers' choices that yield consistently brain networks with repeatable topologies, giving me the chance to recommend best practices over consistent topologies.
Collapse
Affiliation(s)
- Stavros I Dimitriadis
- Department of Clinical Psychology and Psychobiology, Faculty of Psychology, University of Barcelona, Passeig de la Vall d'Hebron, 171, 08035, Barcelona, Spain.
- Institut de Neurociències, University of Barcelona, Campus Mundet, Edifici de PonentPasseig de la Vall d'Hebron, 171, 08035, Barcelona, Spain.
- Integrative Neuroimaging Lab, 55133, Thessaloniki, Greece.
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, College of Biomedical and Life Sciences, Cardiff University, Wales, CF24 4HQ, Cardiff, UK.
- Neuroinformatics Group, School of Psychology, College of Biomedical and Life Sciences, Cardiff University Brain Research Imaging Centre (CUBRIC), CF24 4HQ, Cardiff, Wales, UK.
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, College of Biomedical and Life Sciences, Cardiff University, Cardiff, CF24 4HQ, Wales, UK.
- Neuroscience and Mental Health Research Institute, School of Medicine, College of Biomedical and Life Sciences, Cardiff University, CF24 4HQ, Cardiff, Wales, UK.
- MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, College of Biomedical and Life Sciences, Cardiff University, Cardiff, CF24 4HQ, Wales, UK.
| |
Collapse
|
8
|
Stožer A, Šterk M, Paradiž Leitgeb E, Markovič R, Skelin Klemen M, Ellis CE, Križančić Bombek L, Dolenšek J, MacDonald PE, Gosak M. From Isles of Königsberg to Islets of Langerhans: Examining the Function of the Endocrine Pancreas Through Network Science. Front Endocrinol (Lausanne) 2022; 13:922640. [PMID: 35784543 PMCID: PMC9240343 DOI: 10.3389/fendo.2022.922640] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 05/16/2022] [Indexed: 12/12/2022] Open
Abstract
Islets of Langerhans are multicellular microorgans located in the pancreas that play a central role in whole-body energy homeostasis. Through secretion of insulin and other hormones they regulate postprandial storage and interprandial usage of energy-rich nutrients. In these clusters of hormone-secreting endocrine cells, intricate cell-cell communication is essential for proper function. Electrical coupling between the insulin-secreting beta cells through gap junctions composed of connexin36 is particularly important, as it provides the required, most important, basis for coordinated responses of the beta cell population. The increasing evidence that gap-junctional communication and its modulation are vital to well-regulated secretion of insulin has stimulated immense interest in how subpopulations of heterogeneous beta cells are functionally arranged throughout the islets and how they mediate intercellular signals. In the last decade, several novel techniques have been proposed to assess cooperation between cells in islets, including the prosperous combination of multicellular imaging and network science. In the present contribution, we review recent advances related to the application of complex network approaches to uncover the functional connectivity patterns among cells within the islets. We first provide an accessible introduction to the basic principles of network theory, enumerating the measures characterizing the intercellular interactions and quantifying the functional integration and segregation of a multicellular system. Then we describe methodological approaches to construct functional beta cell networks, point out possible pitfalls, and specify the functional implications of beta cell network examinations. We continue by highlighting the recent findings obtained through advanced multicellular imaging techniques supported by network-based analyses, giving special emphasis to the current developments in both mouse and human islets, as well as outlining challenges offered by the multilayer network formalism in exploring the collective activity of islet cell populations. Finally, we emphasize that the combination of these imaging techniques and network-based analyses does not only represent an innovative concept that can be used to describe and interpret the physiology of islets, but also provides fertile ground for delineating normal from pathological function and for quantifying the changes in islet communication networks associated with the development of diabetes mellitus.
Collapse
Affiliation(s)
- Andraž Stožer
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Marko Šterk
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Department of Physics, Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
| | - Eva Paradiž Leitgeb
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Rene Markovič
- Department of Physics, Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
- Institute of Mathematics and Physics, Faculty of Electrical Engineering and Computer Science, University of Maribor, Maribor, Slovenia
| | - Maša Skelin Klemen
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Cara E. Ellis
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | | | - Jurij Dolenšek
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Department of Physics, Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
| | - Patrick E. MacDonald
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Marko Gosak
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Department of Physics, Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
| |
Collapse
|
9
|
Duszyk-Bogorodzka A, Zieleniewska M, Jankowiak-Siuda K. Brain Activity Characteristics of Patients With Disorders of Consciousness in the EEG Resting State Paradigm: A Review. Front Syst Neurosci 2022; 16:654541. [PMID: 35720438 PMCID: PMC9198636 DOI: 10.3389/fnsys.2022.654541] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
The assessment of the level of consciousness in disorders of consciousness (DoC) is still one of the most challenging problems in contemporary medicine. Nevertheless, based on the multitude of studies conducted over the last 20 years on resting states based on electroencephalography (EEG) in DoC, it is possible to outline the brain activity profiles related to both patients without preserved consciousness and minimally conscious ones. In the case of patients without preserved consciousness, the dominance of low, mostly delta, frequency, and the marginalization of the higher frequencies were observed, both in terms of the global power of brain activity and in functional connectivity patterns. In turn, the minimally conscious patients revealed the opposite brain activity pattern—the characteristics of higher frequency bands were preserved both in global power and in functional long-distance connections. In this short review, we summarize the state of the art of EEG-based research in the resting state paradigm, in the context of providing potential support to the traditional clinical assessment of the level of consciousness.
Collapse
Affiliation(s)
- Anna Duszyk-Bogorodzka
- Behavioural Neuroscience Lab, Institute of Psychology, SWPS University of Social Sciences and Humanities, Warsaw, Poland
- *Correspondence: Anna Duszyk-Bogorodzka
| | | | - Kamila Jankowiak-Siuda
- Behavioural Neuroscience Lab, Institute of Psychology, SWPS University of Social Sciences and Humanities, Warsaw, Poland
| |
Collapse
|
10
|
Vicente-Querol MA, Fernandez-Caballero A, Molina JP, Gonzalez-Gualda LM, Fernandez-Sotos P, Garcia AS. Facial Affect Recognition in Immersive Virtual Reality: Where Is the Participant Looking? Int J Neural Syst 2022; 32:2250029. [DOI: 10.1142/s0129065722500290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
11
|
Altıntop ÇG, Latifoğlu F, Akın AK, Bayram A, Çiftçi M. Classification of Depth of Coma Using Complexity Measures and Nonlinear Features of Electroencephalogram Signals. Int J Neural Syst 2022; 32:2250018. [PMID: 35300584 DOI: 10.1142/s0129065722500186] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In recent years, some electrophysiological analysis methods of consciousness have been proposed. Most of these studies are based on visual interpretation or statistical analysis, and there is hardly any work classifying the level of consciousness in a deep coma. In this study, we perform an analysis of electroencephalography complexity measures by quantifying features efficiency in differentiating patients in different consciousness levels. Several measures of complexity have been proposed to quantify the complexity of signals. Our aim is to lay the foundation of a system that will objectively define the level of consciousness by performing a complexity analysis of Electroencephalogram (EEG) signals. Therefore, a nonlinear analysis of EEG signals obtained with a recording scheme proposed by us from 39 patients with Glasgow Coma Scale (GCS) between 3 and 8 was performed. Various entropy values (approximate entropy, permutation entropy, etc.) obtained from different algorithms, Hjorth parameters, Lempel-Ziv complexity and Kolmogorov complexity values were extracted from the signals as features. The features were analyzed statistically and the success of features in classifying different levels of consciousness was measured by various classifiers. Consequently, levels of consciousness in deep coma (GCS between 3 and 8) were classified with an accuracy of 90.3%. To the authors' best knowledge, this is the first demonstration of the discriminative nonlinear features extracted from tactile and auditory stimuli EEG signals in distinguishing different GCSs of comatose patients.
Collapse
Affiliation(s)
| | - Fatma Latifoğlu
- Department of Biomedical Engineering, Erciyes University, Turkey
| | - Aynur Karayol Akın
- Department of Anesthesiology and Reanimation, Erciyes University, Turkey
| | - Adnan Bayram
- Department of Anesthesiology and Reanimation, Erciyes University, Turkey
| | - Murat Çiftçi
- Department of Neurosurgery, Erciyes University, Turkey
| |
Collapse
|
12
|
Naro A, Pignolo L, Calabrò RS. Brain Network Organization Following Post-Stroke Neurorehabilitation. Int J Neural Syst 2022; 32:2250009. [PMID: 35139774 DOI: 10.1142/s0129065722500095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Brain network analysis can offer useful information to guide the rehabilitation of post-stroke patients. We applied functional network connection models based on multiplex-multilayer network analysis (MMN) to explore functional network connectivity changes induced by robot-aided gait training (RAGT) using the Ekso, a wearable exoskeleton, and compared it to conventional overground gait training (COGT) in chronic stroke patients. We extracted the coreness of individual nodes at multiple locations in the brain from EEG recordings obtained before and after gait training in a resting state. We found that patients provided with RAGT achieved a greater motor function recovery than those receiving COGT. This difference in clinical outcome was paralleled by greater changes in connectivity patterns among different brain areas central to motor programming and execution, as well as a recruitment of other areas beyond the sensorimotor cortices and at multiple frequency ranges, contemporarily. The magnitude of these changes correlated with motor function recovery chances. Our data suggest that the use of RAGT as an add-on treatment to COGT may provide post-stroke patients with a greater modification of the functional brain network impairment following a stroke. This might have potential clinical implications if confirmed in large clinical trials.
Collapse
Affiliation(s)
- Antonino Naro
- IRCCS Centro Neurolesi Bonino Pulejo, Messina, Italy. Via Palermo, SS 113, Ctr. Casazza, 98124, Messina, Italy
| | - Loris Pignolo
- Sant'Anna Institute, Via Siris, 11, 88900 Crotone, Italy
| | - Rocco Salvatore Calabrò
- IRCCS Centro Neurolesi Bonino Pulejo, Messina, Italy. Via Palermo, SS 113, Ctr. Casazza, 98124, Messina, Italy
| |
Collapse
|
13
|
Liu Y, Li Z, Bai Y. Frontal and parietal lobes play crucial roles in understanding the disorder of consciousness: A perspective from electroencephalogram studies. Front Neurosci 2022; 16:1024278. [PMID: 36778900 PMCID: PMC9909102 DOI: 10.3389/fnins.2022.1024278] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 12/19/2022] [Indexed: 01/27/2023] Open
Abstract
Background Electroencephalogram (EEG) studies have established many characteristics relevant to consciousness levels of patients with disorder of consciousness (DOC). Although the frontal and parietal brain regions were often highlighted in DOC studies, their electro-neurophysiological roles in constructing human consciousness remain unclear because of the fragmented information from literatures and the complexity of EEG characteristics. Methods Existing EEG studies of DOC patients were reviewed and summarized. Relevant findings and results about the frontal and parietal regions were filtered, compared, and concluded to clarify their roles in consciousness classification and outcomes. The evidence covers multi-dimensional EEG characteristics including functional connectivity, non-linear dynamics, spectrum power, transcranial magnetic stimulation-electroencephalography (TMS-EEG), and event-related potential. Results and conclusion Electroencephalogram characteristics related to frontal and parietal regions consistently showed high relevance with consciousness: enhancement of low-frequency rhythms, suppression of high-frequency rhythms, reduction of dynamic complexity, and breakdown of networks accompanied with decreasing consciousness. Owing to the limitations of EEG, existing studies have not yet clarified which one between the frontal and parietal has priority in consciousness injury or recovery. Source reconstruction with high-density EEG, machine learning with large samples, and TMS-EEG mapping will be important approaches for refining EEG awareness locations.
Collapse
Affiliation(s)
- Yesong Liu
- School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China.,Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Zhaoyi Li
- School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China.,Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Yang Bai
- School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China.,Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
14
|
Covantes-Osuna C, López JB, Paredes O, Vélez-Pérez H, Romo-Vázquez R. Multilayer Network Approach in EEG Motor Imagery with an Adaptive Threshold. SENSORS 2021; 21:s21248305. [PMID: 34960399 PMCID: PMC8704651 DOI: 10.3390/s21248305] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 12/05/2021] [Accepted: 12/06/2021] [Indexed: 12/15/2022]
Abstract
The brain has been understood as an interconnected neural network generally modeled as a graph to outline the functional topology and dynamics of brain processes. Classic graph modeling is based on single-layer models that constrain the traits conveyed to trace brain topologies. Multilayer modeling, in contrast, makes it possible to build whole-brain models by integrating features of various kinds. The aim of this work was to analyze EEG dynamics studies while gathering motor imagery data through single-layer and multilayer network modeling. The motor imagery database used consists of 18 EEG recordings of four motor imagery tasks: left hand, right hand, feet, and tongue. Brain connectivity was estimated by calculating the coherence adjacency matrices from each electrophysiological band (δ, θ, α and β) from brain areas and then embedding them by considering each band as a single-layer graph and a layer of the multilayer brain models. Constructing a reliable multilayer network topology requires a threshold that distinguishes effective connections from spurious ones. For this reason, two thresholds were implemented, the classic fixed (average) one and Otsu’s version. The latter is a new proposal for an adaptive threshold that offers reliable insight into brain topology and dynamics. Findings from the brain network models suggest that frontal and parietal brain regions are involved in motor imagery tasks.
Collapse
|
15
|
Feng N, Hu F, Wang H, Zhou B. Motor Intention Decoding from the Upper Limb by Graph Convolutional Network Based on Functional Connectivity. Int J Neural Syst 2021; 31:2150047. [PMID: 34693880 DOI: 10.1142/s0129065721500477] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Decoding brain intention from noninvasively measured neural signals has recently been a hot topic in brain-computer interface (BCI). The motor commands about the movements of fine parts can increase the degrees of freedom under control and be applied to external equipment without stimulus. In the decoding process, the classifier is one of the key factors, and the graph information of the EEG was ignored by most researchers. In this paper, a graph convolutional network (GCN) based on functional connectivity was proposed to decode the motor intention of four fine parts movements (shoulder, elbow, wrist, hand). First, event-related desynchronization was analyzed to reveal the differences between the four classes. Second, functional connectivity was constructed by using synchronization likelihood (SL), phase-locking value (PLV), H index (H), mutual information (MI), and weighted phase-lag index (WPLI) to acquire the electrode pairs with a difference. Subsequently, a GCN and convolutional neural networks (CNN) were performed based on functional topological structures and time points, respectively. The results demonstrated that the proposed method achieved a decoding accuracy of up to 92.81% in the four-class task. Besides, the combination of GCN and functional connectivity can promote the development of BCI.
Collapse
Affiliation(s)
- Naishi Feng
- Department of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, P. R. China
| | - Fo Hu
- Department of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, P. R. China
| | - Hong Wang
- Department of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, P. R. China
| | - Bin Zhou
- Department of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, P. R. China
| |
Collapse
|
16
|
Sarasso S, Casali AG, Casarotto S, Rosanova M, Sinigaglia C, Massimini M. Consciousness and complexity: a consilience of evidence. Neurosci Conscious 2021; 2021:niab023. [PMID: 38496724 PMCID: PMC10941977 DOI: 10.1093/nc/niab023] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/19/2021] [Accepted: 07/29/2021] [Indexed: 03/19/2024] Open
Abstract
Over the last years, a surge of empirical studies converged on complexity-related measures as reliable markers of consciousness across many different conditions, such as sleep, anesthesia, hallucinatory states, coma, and related disorders. Most of these measures were independently proposed by researchers endorsing disparate frameworks and employing different methods and techniques. Since this body of evidence has not been systematically reviewed and coherently organized so far, this positive trend has remained somewhat below the radar. The aim of this paper is to make this consilience of evidence in the science of consciousness explicit. We start with a systematic assessment of the growing literature on complexity-related measures and identify their common denominator, tracing it back to core theoretical principles and predictions put forward more than 20 years ago. In doing this, we highlight a consistent trajectory spanning two decades of consciousness research and provide a provisional taxonomy of the present literature. Finally, we consider all of the above as a positive ground to approach new questions and devise future experiments that may help consolidate and further develop a promising field where empirical research on consciousness appears to have, so far, naturally converged.
Collapse
Affiliation(s)
- Simone Sarasso
- Department of Biomedical and Clinical Sciences ‘L. Sacco’, University of Milan, Milan 20157, Italy
| | - Adenauer Girardi Casali
- Instituto de Ciência e Tecnologia, Universidade Federal de São Paulo, Sao Jose dos Campos, 12247-014, Brazil
| | - Silvia Casarotto
- Department of Biomedical and Clinical Sciences ‘L. Sacco’, University of Milan, Milan 20157, Italy
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan 20148, Italy
| | - Mario Rosanova
- Department of Biomedical and Clinical Sciences ‘L. Sacco’, University of Milan, Milan 20157, Italy
| | | | - Marcello Massimini
- Department of Biomedical and Clinical Sciences ‘L. Sacco’, University of Milan, Milan 20157, Italy
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan 20148, Italy
| |
Collapse
|
17
|
Wutzl B, Golaszewski SM, Leibnitz K, Langthaler PB, Kunz AB, Leis S, Schwenker K, Thomschewski A, Bergmann J, Trinka E. Narrative Review: Quantitative EEG in Disorders of Consciousness. Brain Sci 2021; 11:brainsci11060697. [PMID: 34070647 PMCID: PMC8228474 DOI: 10.3390/brainsci11060697] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/17/2021] [Accepted: 05/21/2021] [Indexed: 02/06/2023] Open
Abstract
In this narrative review, we focus on the role of quantitative EEG technology in the diagnosis and prognosis of patients with unresponsive wakefulness syndrome and minimally conscious state. This paper is divided into two main parts, i.e., diagnosis and prognosis, each consisting of three subsections, namely, (i) resting-state EEG, including spectral power, functional connectivity, dynamic functional connectivity, graph theory, microstates and nonlinear measurements, (ii) sleep patterns, including rapid eye movement (REM) sleep, slow-wave sleep and sleep spindles and (iii) evoked potentials, including the P300, mismatch negativity, the N100, the N400 late positive component and others. Finally, we summarize our findings and conclude that QEEG is a useful tool when it comes to defining the diagnosis and prognosis of DOC patients.
Collapse
Affiliation(s)
- Betty Wutzl
- Graduate School of Information Science and Technology, Osaka University, Suita 565-0871, Japan; (B.W.); (K.L.)
- Symbiotic Intelligent Systems Research Center, Osaka University, Suita 565-0871, Japan
| | - Stefan M. Golaszewski
- Department of Neurology, Christian Doppler Medical Center, and Centre for Cognitive Neuroscience, Paracelsus Medical University, Affiliated Member of the European Reference Network EpiCARE, 5020 Salzburg, Austria; (S.M.G.); (P.B.L.); (A.B.K.); (S.L.); (K.S.); (A.T.); (J.B.)
- Karl Landsteiner Institute for Neurorehabilitation and Space Neurology, 5020 Salzburg, Austria
- Neuroscience Institute, Christian Doppler Medical Center, and Centre for Cognitive Neuroscience, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Kenji Leibnitz
- Graduate School of Information Science and Technology, Osaka University, Suita 565-0871, Japan; (B.W.); (K.L.)
- Center for Information and Neural Networks, National Institute of Information and Communications Technology, Suita 565-0871, Japan
| | - Patrick B. Langthaler
- Department of Neurology, Christian Doppler Medical Center, and Centre for Cognitive Neuroscience, Paracelsus Medical University, Affiliated Member of the European Reference Network EpiCARE, 5020 Salzburg, Austria; (S.M.G.); (P.B.L.); (A.B.K.); (S.L.); (K.S.); (A.T.); (J.B.)
- Department of Mathematics, Paris Lodron University of Salzburg, 5020 Salzburg, Austria
- Team Biostatistics and Big Medical Data, IDA Lab Salzburg, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Alexander B. Kunz
- Department of Neurology, Christian Doppler Medical Center, and Centre for Cognitive Neuroscience, Paracelsus Medical University, Affiliated Member of the European Reference Network EpiCARE, 5020 Salzburg, Austria; (S.M.G.); (P.B.L.); (A.B.K.); (S.L.); (K.S.); (A.T.); (J.B.)
- Karl Landsteiner Institute for Neurorehabilitation and Space Neurology, 5020 Salzburg, Austria
| | - Stefan Leis
- Department of Neurology, Christian Doppler Medical Center, and Centre for Cognitive Neuroscience, Paracelsus Medical University, Affiliated Member of the European Reference Network EpiCARE, 5020 Salzburg, Austria; (S.M.G.); (P.B.L.); (A.B.K.); (S.L.); (K.S.); (A.T.); (J.B.)
- Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Kerstin Schwenker
- Department of Neurology, Christian Doppler Medical Center, and Centre for Cognitive Neuroscience, Paracelsus Medical University, Affiliated Member of the European Reference Network EpiCARE, 5020 Salzburg, Austria; (S.M.G.); (P.B.L.); (A.B.K.); (S.L.); (K.S.); (A.T.); (J.B.)
- Karl Landsteiner Institute for Neurorehabilitation and Space Neurology, 5020 Salzburg, Austria
- Neuroscience Institute, Christian Doppler Medical Center, and Centre for Cognitive Neuroscience, Paracelsus Medical University, 5020 Salzburg, Austria
- Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Aljoscha Thomschewski
- Department of Neurology, Christian Doppler Medical Center, and Centre for Cognitive Neuroscience, Paracelsus Medical University, Affiliated Member of the European Reference Network EpiCARE, 5020 Salzburg, Austria; (S.M.G.); (P.B.L.); (A.B.K.); (S.L.); (K.S.); (A.T.); (J.B.)
- Neuroscience Institute, Christian Doppler Medical Center, and Centre for Cognitive Neuroscience, Paracelsus Medical University, 5020 Salzburg, Austria
- Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Jürgen Bergmann
- Department of Neurology, Christian Doppler Medical Center, and Centre for Cognitive Neuroscience, Paracelsus Medical University, Affiliated Member of the European Reference Network EpiCARE, 5020 Salzburg, Austria; (S.M.G.); (P.B.L.); (A.B.K.); (S.L.); (K.S.); (A.T.); (J.B.)
- Neuroscience Institute, Christian Doppler Medical Center, and Centre for Cognitive Neuroscience, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Eugen Trinka
- Department of Neurology, Christian Doppler Medical Center, and Centre for Cognitive Neuroscience, Paracelsus Medical University, Affiliated Member of the European Reference Network EpiCARE, 5020 Salzburg, Austria; (S.M.G.); (P.B.L.); (A.B.K.); (S.L.); (K.S.); (A.T.); (J.B.)
- Karl Landsteiner Institute for Neurorehabilitation and Space Neurology, 5020 Salzburg, Austria
- Neuroscience Institute, Christian Doppler Medical Center, and Centre for Cognitive Neuroscience, Paracelsus Medical University, 5020 Salzburg, Austria
- Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, 5020 Salzburg, Austria
- Correspondence: ; Tel.: +43-5-7255-34600
| |
Collapse
|
18
|
Naro A, Calabrò RS. Towards New Diagnostic Approaches in Disorders of Consciousness: A Proof of Concept Study on the Promising Use of Imagery Visuomotor Task. Brain Sci 2020; 10:brainsci10100746. [PMID: 33080823 PMCID: PMC7603054 DOI: 10.3390/brainsci10100746] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 10/08/2020] [Accepted: 10/14/2020] [Indexed: 12/16/2022] Open
Abstract
Background: advanced paraclinical approaches using functional neuroimaging and electroencephalography (EEG) allow identifying patients who are covertly aware despite being diagnosed as unresponsive wakefulness syndrome (UWS). Bedside detection of covert awareness employing motor imagery tasks (MI), which is a universally accepted clinical indicator of awareness in the absence of overt behavior, may miss some of these patients, as they could still have a certain level of awareness. We aimed at assessing covert awareness in patients with UWS using a visuomotor-guided motor imagery task (VMI) during EEG recording. Methods: nine patients in a minimally conscious state (MCS), 11 patients in a UWS, and 15 healthy individuals (control group—CG) were provided with an VMI (imagine dancing while watching a group dance video to command), a simple-MI (imagine squeezing their right hand to command), and an advanced-MI (imagine dancing without watching a group dance video to command) to detect command-following. We analyzed the command-specific EEG responses (event-related synchronization/desynchronization—ERS/ERD) of each patient, assessing whether these responses were appropriate, consistent, and statistically similar to those elicited in the CG, as reliable markers of motor imagery. Results: All patients in MCS, all healthy individuals and one patient in UWS repeatedly and reliably generated appropriate EEG responses to distinct commands of motor imagery with a classification accuracy of 60–80%. Conclusions: VMI outperformed significantly MI tasks. Therefore, patients in UWS may be still misdiagnosed despite a rigorous clinical assessment and an appropriate MI assessment. It is thus possible to suggest that motor imagery tasks should be delivered to patients with chronic disorders of consciousness in visuomotor-aided modality (also in the rehabilitation setting) to greatly entrain patient’s participation. In this regard, the EEG approach we described has the clear advantage of being cheap, portable, widely available, and objective. It may be thus considered as, at least, a screening tool to identify the patients who deserve further, advanced paraclinical approaches.
Collapse
|