1
|
Tan Z, Li Y, Wu Y, Yang H, Zhang H, Liu Z, Cheng Y, Wu P. Chemical components with biological activities in the roots of Ilex pubescens. Fitoterapia 2024; 177:106076. [PMID: 38897247 DOI: 10.1016/j.fitote.2024.106076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/06/2024] [Accepted: 06/16/2024] [Indexed: 06/21/2024]
Abstract
Two new triterpenoids, ilexsaponin U (1) and ilexsaponin V (2), and three new phenylpropanoids, pubescenoside S (3), pubescenoside T (38), and pubescenoside U (39), along with thirty-four existing compounds were isolated from the roots of Ilex pubescens. The elucidation of their structures involved comprehensive spectroscopic techniques, including IR, UV, HR-ESI-MS, and NMR experiments. The anti-inflammatory effects of almost all the compounds were evaluated in LPS-induced RAW264.7 cells. Among these, compounds 1, 4, 8, 11, 12, 26, 27, 29 and 33 exhibited varying degrees of inhibition of inflammatory factors. Notably, compounds 1, 4 and 8 significantly inhibited the mRNA levels of iNOS, IL-6, IL-1β and TNFα, comparable to or exceeding the effect of the positive control (dexamethasone, DEX). We also evaluated the cardioprotective effects of these compounds in OGD/R-induced H9c2 cells. The results revealed that compounds 2, 3, 7, 8, 26, 35, 36 and 37 at 20 μM significantly increased cell viability by 24.9 ± 3.4%, 28.0 ± 0.3%, 37.6 ± 0.2%, 44.86 ± 0.5%, 9.47 ± 2.1%, 23.9 ± 0.4%, 39.5 ± 3.1% and 28.2 ± 0.1%, respectively. Some of them exhibited effects equal to or greater than that of the positive control (diazoxide, DZ) at 100 μM, showing a 21.9 ± 3.0% increase.
Collapse
Affiliation(s)
- Zihao Tan
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yongkang Li
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuhong Wu
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Han Yang
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hongli Zhang
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhongqiu Liu
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuanyuan Cheng
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China..
| | - Peng Wu
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China..
| |
Collapse
|
2
|
Lan T, Duan G, Qi Y, Almezgagi M, Fan G, Ma Y. Exploration of chemical compositions in different germplasm wolfberry using UPLC-MS/MS and evaluation of the in vitro anti-inflammatory activity of quercetin. Front Pharmacol 2024; 15:1426944. [PMID: 39027334 PMCID: PMC11255399 DOI: 10.3389/fphar.2024.1426944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/13/2024] [Indexed: 07/20/2024] Open
Abstract
Wolfberry, esteemed as a traditional Chinese medicinal material and functional food, is replete with nutrients and boasts a diverse array of health benefits, including hypoglycemic, antitumor, antioxidant, anti-inflammatory, and immune-enhancing properties. Notably, inflammation is a pivotal factor in the onset and progression of numerous diseases. Despite this, there is a paucity of research on the comprehensive evaluation of the components found in different wolfberries, and the exploration of their primary active components is limited. To address this issue, we conducted a comprehensive targeted metabolomics analysis, employing statistical methods such as principal component analysis (PCA), orthogonal partial least squares discriminant analysis (OPLS-DA), KEGG pathway analysis, and volcano plots to delineate the compositional differences among red, black, and yellow wolfberries. Furthermore, we investigated the anti-inflammatory effects of their primary components through in vitro experiments. Our analysis revealed a total of 1,104 chemical compositions in the three wolfberries, with alkaloids, phenolic acids, flavonoids, and lipids being the predominant nutritional components. KEGG enrichment analysis indicated that these compositions were primarily involved in the biosynthesis of secondary metabolites, ABC transport, and galactose metabolism pathway. Moreover, our study demonstrated that quercetin exhibited dose-dependent anti-inflammatory activity in LPS-stimulated HUVECs. It effectively inhibited the production of inflammatory factors such as TNF-α, MCP-1, and IL-1β, while also down-regulating the gene and protein expression levels of ICAM-1 and VCAM-1. In conclusion, our findings indicate that there are variations in compositions among the three wolfberries, with flavonoids being the most abundant, and in vitro studies also confirmed the anti-inflammatory potential of quercetin. It is worth noting that Lycium ruthenicum contains higher levels of antioxidant components and possesses greater nutritional value, providing valuable insights for the future development and utilization of the three wolfberries.
Collapse
Affiliation(s)
- Tian Lan
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, China
- College of Medical, Qinghai University, Xining, China
- College of Tibetan Medicine, Qinghai University, Xining, China
| | - Guozhen Duan
- College of Agriculture and Forestry, Qinghai University, Xining, China
| | - Youchao Qi
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, China
- College of Medical, Qinghai University, Xining, China
- College of Tibetan Medicine, Qinghai University, Xining, China
| | - Maged Almezgagi
- High-altitude Medical Research Center, the Key Laboratory of High-altitude Medical Application of Qinghai Province, Department of Immunology, Medical College of Qinghai University, Xining, China
| | - Guanghui Fan
- College of Agriculture and Forestry, Qinghai University, Xining, China
| | - Yonggui Ma
- Key Laboratory of Medicinal Animal and Plant Resources of Qinghai Tibetan Plateau, Qinghai Normal University, Xining, China
| |
Collapse
|
3
|
He S, Wen N, Chen X, Liu C, Xiao X, Li X, Yuan L, Mu Y. Emulsion template fabricated heterogeneous bilayer gelatin-based scaffolds with sustained-delivery of lycium barbarum glycopeptide for periodontitis treatment. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:1379-1399. [PMID: 38529842 DOI: 10.1080/09205063.2024.2329455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/28/2024] [Indexed: 03/27/2024]
Abstract
Periodontitis is a chronic inflammatory disease raising the risks of tooth-supporting structures destruction and even tooth loss. The way to reconstruct periodontal bone tissues in inflammatory microenvironment has been long in demand for periodontitis treatment. In this study, the lycium barbarum glycopeptide (LbGP) loaded gelatin-based scaffolds were fabricated for periodontitis treatment. Gelatin microspheres with suitable size were prepared by emulsification and gathered by oxidized sodium alginate to prepare heterogeneous bilayer gelatin-based scaffolds, and then they were loaded with LbGP. The prepared scaffolds possessed interconnected porous microstructures, good degradation properties, sufficient mechanical properties, sustained release behavior and well biocompatibility. In vitro experiments suggested that the LbGP loaded gelatin-based scaffolds could inhibit the expression of inflammatory factors (IL-1β, IL-6, and TNF-α), promote the expression of anti-inflammatory factor (IL-10), and the expression of osteogenic markers (BMP2, Runx2, ALP, and OCN) in PDLSCs under the LPS-stimulated inflammatory microenvironment. Moreover, in rat periodontitis models, the LbGP gelatin-based scaffolds would reduce the alveolar bone resorption of rats, increase the collagen fiber content of periodontal membrane, alleviate local inflammation and improve the expression of osteogenesis-related factors. Therefore, the LbGP loaded gelatin-based scaffolds in this study will provide a potential therapeutic strategy for periodontitis treatment.
Collapse
Affiliation(s)
- Siqi He
- School of Stomatology, Southwest Medical University, Luzhou, China
- Stomatology Department, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Nan Wen
- School of Stomatology, Southwest Medical University, Luzhou, China
- Stomatology Department, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xun Chen
- School of Stomatology, Southwest Medical University, Luzhou, China
- Stomatology Department, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Cong Liu
- Stomatology Department, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xun Xiao
- Stomatology Department, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xinlun Li
- Stomatology Department, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Lun Yuan
- Stomatology Department, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yandong Mu
- School of Stomatology, Southwest Medical University, Luzhou, China
- Stomatology Department, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
4
|
Lu C, Deng S, Liu Y, Yang S, Qin D, Zhang L, Wang RR, Zhang Y. Inhibition of macrophage MAPK/NF-κB pathway and Th2 axis by mangiferin ameliorates MC903-induced atopic dermatitis. Int Immunopharmacol 2024; 133:112038. [PMID: 38621336 DOI: 10.1016/j.intimp.2024.112038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/05/2024] [Accepted: 04/05/2024] [Indexed: 04/17/2024]
Abstract
Available online Atopic dermatitis (AD) is a chronic, persistent inflammatory skin disease characterized by eczema-like lesions and itching. Although topical steroids have been reported for treating AD, they are associated with adverse effects. Thus, safer medications are needed for those who cannot tolerate these agents for long periods. Mangiferin (MAN) is a flavonoid widely found in many herbs, with significant anti-inflammatory and immunomodulatory activities. However, the potential modulatory effects and mechanisms of MAN in treating Th2 inflammation in AD are unknown. In the present study, we reported that MAN could reduce inflammatory cell infiltration and scratching at the lesion site by decreasing MC903-induced levels of Th2-type cytokines, Histamine, thymic stromal lymphopoietin, Leukotriene B4, and immunoglobulin E. The mechanism may be related to reductions in MAPK and NF-κB-associated protein phosphorylation by macrophages. The results suggested that MAN may be a promising therapeutic agent for AD.
Collapse
Affiliation(s)
- Cheng Lu
- School of Chinese Materia Medica,Yunnan University of Chinese Medicine, Kunming 650500, China
| | - ShiJun Deng
- School of Chinese Materia Medica,Yunnan University of Chinese Medicine, Kunming 650500, China
| | - YanJiao Liu
- School of Chinese Materia Medica,Yunnan University of Chinese Medicine, Kunming 650500, China
| | - ShengJin Yang
- School of Chinese Materia Medica,Yunnan University of Chinese Medicine, Kunming 650500, China
| | - DingMei Qin
- School of Chinese Materia Medica,Yunnan University of Chinese Medicine, Kunming 650500, China
| | - LiJuan Zhang
- School of Basic Medical, Yunnan University of Chinese Medicine, Kunming, China
| | - Rui-Rui Wang
- School of Chinese Materia Medica,Yunnan University of Chinese Medicine, Kunming 650500, China.
| | - Yi Zhang
- School of Chinese Materia Medica,Yunnan University of Chinese Medicine, Kunming 650500, China.
| |
Collapse
|
5
|
Sharifi‐Rad J, Quetglas‐Llabrés MM, Sureda A, Mardones L, Villagran M, Sönmez Gürer E, Živković J, Ezzat SM, Zayed A, Gümüşok S, Sibel Kılıç C, Fasipe B, Laher I, Martorell M. Supercharging metabolic health with Lycium barbarum L.: A review of the therapeutic potential of this functional food for managing metabolic syndrome. FOOD FRONTIERS 2024; 5:420-434. [DOI: 10.1002/fft2.327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
AbstractMetabolic syndrome (MetS) is a common disorder involving a cluster of metabolic abnormalities, such as abdominal obesity, hypertension, dyslipidemia, insulin resistance, and atherogenic profile. MetS is characterized by an increase in oxidative stress and a chronic proinflammatory state, which are directly related to the development and progression of this pathology. It has been seen how a healthy lifestyle and good dietary practices are key to improving the different metabolic parameters and, therefore, play a fundamental role in reducing the risk of developing diabetes. The present review focuses on the research evidence related to the therapeutic properties of Lycium barbarum L. in MetS gathered in the last years. Several preclinical studies suggest that L. barbarum extracts are a good dietary supplement for the prevention of cardiovascular diseases in people with MetS. This compound has been used for years in traditional Chinese medicine for the treatment of atrophic gastritis, problems related to the lungs, kidneys, and liver, and as a supplement for eye health. In addition, different in vitro and in vivo studies have been carried out that support the properties attributed to metabolites derived from L. barbarum, such as polysaccharides that have been shown diverse biological activities. In conclusion, L. barbarum extracts have multiple benefits to increase general well‐being and immune function. However, there are a limited number of studies related to effect of L. barbarum in MetS, but they demonstrated effectiveness in the treatment of obesity, diabetes mellitus type 2, and prevention of diabetes mellitus type 2 complication.
Collapse
Affiliation(s)
| | - Maria Magdalena Quetglas‐Llabrés
- Research Group in Community Nutrition and Oxidative Stress and Health Research Institute of Balearic Islands (IdISBa) University of the Balearic Islands‐IUNICS Palma de Mallorca, Mallorca Spain
| | - Antoni Sureda
- Research Group in Community Nutrition and Oxidative Stress and Health Research Institute of Balearic Islands (IdISBa) University of the Balearic Islands‐IUNICS Palma de Mallorca, Mallorca Spain
- CIBEROBN (Physiopathology of Obesity and Nutrition) Instituto de Salud Carlos III Madrid Spain
| | - Lorena Mardones
- Department of Basic Science, Faculty of Medicine Universidad Católica de la Santísima Concepcion Concepción Chile
| | - Marcelo Villagran
- Department of Basic Science, Faculty of Medicine Universidad Católica de la Santísima Concepcion Concepción Chile
- Scientific‐Technological Center for the Sustainable Development of the Coastline Universidad Católica de la Santísima Concepción Concepción Chile
| | - Eda Sönmez Gürer
- Faculty of Pharmacy, Department of Pharmacognosy Sivas Cumhuriyet University Sivas Turkey
| | - Jelena Živković
- Institute for Medicinal Plant Research “Dr Josif Pančić”, Tadeuša Košćuška 1 Belgrade Serbia
| | - Shahira M. Ezzat
- Department of Pharmacognosy, Faculty of Pharmacy Cairo University Cairo Egypt
- Department of Pharmacognosy, Faculty of Pharmacy October University for Modern Science and Arts (MSA) 6th of October Egypt
| | - Ahmed Zayed
- Department of Pharmacognosy Tanta University, College of Pharmacy Tanta Egypt
| | - Safa Gümüşok
- Department of Pharmaceutical Botany Ankara University Faculty of Pharmacy Ankara Turkey
| | - Ceyda Sibel Kılıç
- Department of Pharmaceutical Botany Ankara University Faculty of Pharmacy Ankara Turkey
| | - Babatunde Fasipe
- Faculty of Basic Medical Sciences, Department of Pharmacology and Therapeutics Bowen University Iwo Nigeria
| | - Ismail Laher
- Faculty of Medicine, Department of Anesthesiology, Pharmacology and Therapeutics The University of British Columbia Vancouver British Columbia Canada
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy and Centre for Healthy Living University of Concepción Concepción Chile
| |
Collapse
|
6
|
Kim HM, Kim JY, Kim JH, Kim CY. Kukoamine B from Lycii Radicis Cortex Protects Human Keratinocyte HaCaT Cells through Covalent Modification by Trans-2-Nonenal. PLANTS (BASEL, SWITZERLAND) 2022; 12:163. [PMID: 36616291 PMCID: PMC9823295 DOI: 10.3390/plants12010163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
The unsaturated aldehyde trans-2-nonenal is known to be generated by lipid peroxidation at the surface of the skin in an aging-related manner and has harmful effects on keratinocytes in the skin. In this study, the protective effect of a Lycii Radicis Cortex (LRC) extract against trans-2-nonenal-induced cell damage on human keratinocyte cell lines (HaCaT) was investigated. Notably, treatment with the LRC extract resulted in an increase in cell survival, while trans-2-nonenal decreased the viability of HaCaT cells. For identification of interaction between the LRC extract and trans-2-nonenal, this mixture was incubated in simulated physiological conditions, showing a strong decrease in the amount of trans-2-nonenal by the LRC extract. Subsequent LC-ESI-MS analysis revealed that kukoamine B (KB) formed Schiff base-derived pyridinium adducts with trans-2-nonenal. Thus, these results suggest that KB could be a potential agent that may protect HaCaT cells by forming new products with trans-2-nonenal.
Collapse
|
7
|
Lee JA, Shin JY, Hong SS, Cho YR, Park JH, Seo DW, Oh JS, Kang JS, Lee JH, Ahn EK. Tetracera loureiri Extract Regulates Lipopolysaccharide-Induced Inflammatory Response Via Nuclear Factor-κB and Mitogen Activated Protein Kinase Signaling Pathways. PLANTS (BASEL, SWITZERLAND) 2022; 11:284. [PMID: 35161266 PMCID: PMC8839383 DOI: 10.3390/plants11030284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/16/2022] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
Tetracera loureiri (T. loureiri) is a woody climber inhabiting open deciduous or evergreen forests in Southeast Asia. A decoction comprising its stem and other herbs is a traditional Thai remedy for fatigue and jaundice, as well as to promote overall health. Anti-inflammatory effects induced by T. loureiri extract have not been reported. In this study, we investigated the anti-inflammatory effect of an ethanol extract of T. loureiri (ETL) on lipopolysaccharide (LPS)-induced inflammatory response in RAW264.7 macrophages. We found that ETL treatment inhibited the production of nitric oxide (NO) in LPS-stimulated RAW264.7 cells, without affecting cell viability. The effect of ETL on the expression of various pro-inflammatory mediators was analyzed using reverse transcription-polymerase chain reaction (RT-PCR), Western blotting, and enzyme-linked immunosorbent assay (ELISA). We observed that ETL inhibited the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) at the mRNA and protein levels and decreased the production of prostaglandin E2 (PGE2) by COX-2 in RAW264.7 macrophages. ETL dose-dependently reduced the production of pro-inflammatory cytokines including tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6) in LPS-induced RAW264.7 cells, in a dose-dependent manner. Furthermore, ETL suppressed the LPS-induced nuclear translocation of the nuclear factor, NF-κB. Additionally, ETL was found to inhibit the activation of mitogen-activated protein kinases (MAPK), such as extracellular signal-regulated kinase, c-Jun-N-terminal kinase, and p38 MAPK. In conclusion, our findings demonstrate that ETL inhibits the expression of pro-inflammatory mediators and cytokines, thereby downregulating NF-κB and MAPK signaling pathways in LPS-stimulated macrophages, Consequently, ETL is a potential therapeutic agent for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Jung A Lee
- Bio-Center, Gyeonggido Business and Science Accelerator (GBSA), Suwon 16229, Korea; (J.A.L.); (S.S.H.); (Y.-R.C.)
| | - Ju Young Shin
- College of Pharmacy, Dankook University, Cheonan 31116, Korea; (J.Y.S.); (J.-H.P.); (D.-W.S.); (J.S.O.)
| | - Seong Su Hong
- Bio-Center, Gyeonggido Business and Science Accelerator (GBSA), Suwon 16229, Korea; (J.A.L.); (S.S.H.); (Y.-R.C.)
| | - Young-Rak Cho
- Bio-Center, Gyeonggido Business and Science Accelerator (GBSA), Suwon 16229, Korea; (J.A.L.); (S.S.H.); (Y.-R.C.)
| | - Ju-Hyoung Park
- College of Pharmacy, Dankook University, Cheonan 31116, Korea; (J.Y.S.); (J.-H.P.); (D.-W.S.); (J.S.O.)
| | - Dong-Wan Seo
- College of Pharmacy, Dankook University, Cheonan 31116, Korea; (J.Y.S.); (J.-H.P.); (D.-W.S.); (J.S.O.)
| | - Joa Sub Oh
- College of Pharmacy, Dankook University, Cheonan 31116, Korea; (J.Y.S.); (J.-H.P.); (D.-W.S.); (J.S.O.)
| | - Jae-Shin Kang
- Biological Genetic Resources Utilization Division, National Institute of Biological Resources, Incheon 22689, Korea; (J.-S.K.); (J.H.L.)
| | - Jae Ho Lee
- Biological Genetic Resources Utilization Division, National Institute of Biological Resources, Incheon 22689, Korea; (J.-S.K.); (J.H.L.)
| | - Eun-Kyung Ahn
- Bio-Center, Gyeonggido Business and Science Accelerator (GBSA), Suwon 16229, Korea; (J.A.L.); (S.S.H.); (Y.-R.C.)
| |
Collapse
|
8
|
Wu PY, Li TM, Chen SI, Chen CJ, Chiou JS, Lin MK, Tsai FJ, Wu YC, Lin TH, Liao CC, Huang SM, Lin YN, Liang WM, Lin YJ. Complementary Chinese Herbal Medicine Therapy Improves Survival in Patients With Pemphigus: A Retrospective Study From a Taiwan-Based Registry. Front Pharmacol 2020; 11:594486. [PMID: 33362549 PMCID: PMC7756119 DOI: 10.3389/fphar.2020.594486] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/28/2020] [Indexed: 12/26/2022] Open
Abstract
Pemphigus is a life-threatening and skin-specific inflammatory autoimmune disease, characterized by intraepidermal blistering between the mucous membranes and skin. Chinese herbal medicine (CHM) has been used as an adjunct therapy for treating many diseases, including pemphigus. However, there are still limited studies in effects of CHM treatment in pemphigus, especially in Taiwan. To more comprehensively explore the effect of long-term CHM treatment on the overall mortality of pemphigus patients, we performed a retrospective analysis of 1,037 pemphigus patients identified from the Registry for Catastrophic Illness Patients database in Taiwan. Among them, 229 and 177 patients were defined as CHM users and non-users, respectively. CHM users were young, predominantly female, and had a lesser Charlson comorbidity index (CCI) than non-CHM users. After adjusting for age, sex, prednisolone use, and CCI, CHM users had a lower overall mortality risk than non-CHM users (multivariate model: hazard ratio (HR): 0.422, 95% confidence interval (CI): 0.242–0.735, p = 0.0023). The cumulative incidence of overall survival was significantly higher in CHM users than in non-users (p = 0.0025, log rank test). Association rule mining and network analysis showed that there was one main CHM cluster with Qi–Ju–Di–Huang–Wan (QJDHW), Dan–Shen (DanS; Radix Salviae miltiorrhizae; Salvia miltiorrhiza Bunge), Jia–Wei–Xiao–Yao-–San (JWXYS), Huang–Lian (HL; Rhizoma coptidis; Coptis chinensis Franch.), and Di–Gu–Pi (DGP; Cortex lycii; Lycium barbarum L.), while the second CHM cluster included Jin–Yin–Hua (JYH; Flos lonicerae; Lonicera hypoglauca Miq.) and Lian–Qiao (LQ; Fructus forsythiae; Forsythia suspensa (Thunb.) Vahl). In Taiwan, CHMs used as an adjunctive therapy reduced the overall mortality to approximately 20% among pemphigus patients after a follow-up of more than 6 years. A comprehensive CHM list may be useful in future clinical trials and further scientific investigations to improve the overall survival in these patients.
Collapse
Affiliation(s)
- Po-Yuan Wu
- Department of Dermatology, China Medical University Hospital, Taichung, Taiwan.,School of Medicine, China Medical University, Taichung, Taiwan
| | - Te-Mao Li
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Shu-I Chen
- Department of Chinese Medicine, Asia University Hospital, Taichung, Taiwan
| | - Chao-Jung Chen
- Proteomics Core Laboratory, Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.,Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan
| | - Jian-Shiun Chiou
- Department of Health Services Administration, China Medical University, Taichung, Taiwan
| | - Ming-Kuem Lin
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung, Taiwan
| | - Fuu-Jen Tsai
- School of Chinese Medicine, China Medical University, Taichung, Taiwan.,Proteomics Core Laboratory, Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.,Department of Biotechnology and Bioinformatics, Asia University, Taichung, Taiwan
| | - Yang-Chang Wu
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Ting-Hsu Lin
- Proteomics Core Laboratory, Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Chiu-Chu Liao
- Proteomics Core Laboratory, Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Shao-Mei Huang
- Proteomics Core Laboratory, Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Yu-Ning Lin
- Proteomics Core Laboratory, Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Wen-Miin Liang
- Department of Health Services Administration, China Medical University, Taichung, Taiwan
| | - Ying-Ju Lin
- School of Chinese Medicine, China Medical University, Taichung, Taiwan.,Proteomics Core Laboratory, Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
9
|
Kim HJ, Lee J, Kim SC, Seo JY, Hong SB, Park YI. Immunostimulating activity of Lycium chinense Miller root extract through enhancing cytokine and chemokine production and phagocytic capacity of macrophages. J Food Biochem 2020; 44:e13215. [PMID: 32215941 DOI: 10.1111/jfbc.13215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 03/02/2020] [Accepted: 03/05/2020] [Indexed: 12/16/2022]
Abstract
Whereas the fruits and a small portion of root bark of Lycium trees are commonly marketed in Korea as traditional medicine or functional foods, majority of their whole roots have been largely discarded. To develop the whole root of these plants as more value-added materials, this study aimed to evaluate the potential immunostimulating activity of a water extract (GTR-101) from L. chinense Miller roots using macrophages. The GTR-101 (0-500 μg/ml) significantly, dose-dependently increased the secretion of pro-inflammatory cytokines (TNF-α and IL-6), chemokines (RANTES and MIP-1α), nitric oxide, and the expression of inducible nitric oxide synthase, and activated the Akt, NF-κB, and MAPKs (ERK and p38) signaling proteins. GTR-101 also significantly enhanced the phagocytic activity of RAW 264.7 cells and bone marrow-derived macrophages. These results suggest that GTR-101 stimulates the early innate immunity via inducing the pro-inflammatory cytokine and chemokine secretion and enhancing the phagocytic activity of macrophages. PRACTICAL APPLICATIONS: The GTR-101 prepared from L. chinense Miller roots may be useful for enhancing body's defense systems especially in the elderly and cancer patients with an impaired or reduced immune response and may thus be effectively used as a natural immunostimulating ingredient in health foods or complementary medicine.
Collapse
Affiliation(s)
- Hyeon Jeong Kim
- Department of Biotechnology, The Catholic University of Korea, Bucheon, Republic of Korea
| | - Jisun Lee
- Department of Biotechnology, The Catholic University of Korea, Bucheon, Republic of Korea
| | - Seong Cheol Kim
- Department of Biotechnology, The Catholic University of Korea, Bucheon, Republic of Korea
| | - Jeong Yeon Seo
- Department of Biotechnology, The Catholic University of Korea, Bucheon, Republic of Korea
| | | | - Yong Il Park
- Department of Biotechnology, The Catholic University of Korea, Bucheon, Republic of Korea
| |
Collapse
|
10
|
Cerri S, Blandini F. Role of Autophagy in Parkinson's Disease. Curr Med Chem 2019; 26:3702-3718. [PMID: 29484979 DOI: 10.2174/0929867325666180226094351] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 01/30/2018] [Accepted: 02/13/2018] [Indexed: 12/11/2022]
Abstract
Autophagy is an essential catabolic mechanism that delivers misfolded proteins and damaged organelles to the lysosome for degradation. Autophagy pathways include macroautophagy, chaperone-mediated autophagy and microautophagy, each involving different mechanisms of substrate delivery to lysosome. Defects of these pathways and the resulting accumulation of protein aggregates represent a common pathobiological feature of neurodegenerative disorders such as Alzheimer, Parkinson and Huntington disease. This review provides an overview of the role of autophagy in Parkinson's disease (PD) by summarizing the most relevant genetic and experimental evidence showing how this process can contribute to disease pathogenesis. Given lysosomes take part in the final step of the autophagic process, the role of lysosomal defects in the impairment of autophagy and their impact on disease will also be discussed. A glance on the role of non-neuronal autophagy in the pathogenesis of PD will be included. Moreover, we will examine novel pharmacological targets and therapeutic strategies that, by boosting autophagy, may be theoretically beneficial for PD. Special attention will be focused on natural products, such as phenolic compounds, that are receiving increasing consideration due to their potential efficacy associated with low toxicity. Although many efforts have been made to elucidate autophagic process, the development of new therapeutic interventions requires a deeper understanding of the mechanisms that may lead to autophagy defects in PD and should take into account the multifactorial nature of the disease as well as the phenotypic heterogeneity of PD patients.
Collapse
Affiliation(s)
- Silvia Cerri
- Laboratory of Cellular and Molecular Neurobiology, IRCCS Mondino Foundation, Pavia, Italy
| | - Fabio Blandini
- Laboratory of Cellular and Molecular Neurobiology, IRCCS Mondino Foundation, Pavia, Italy
| |
Collapse
|
11
|
Zhang Y, Huang X, Chen H, Zhou D, Yang Z, Wang K, Liu W, Deng S, Yang R, Li J, He R. Discovery of anti-inflammatory terpenoids from Mallotus conspurcatus croizat. JOURNAL OF ETHNOPHARMACOLOGY 2019; 231:170-178. [PMID: 30445108 DOI: 10.1016/j.jep.2018.11.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 10/16/2018] [Accepted: 11/01/2018] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Mallotus conspurcatus croizat (Euphorbiaceae), a plant native to Jinxiu in Guangxi, is popularly used in folk medicine to treat pelvic inflammatory disease. The anti-inflammatory activities of the compounds obtained from M. conspurcatus root were evaluated in this study. AIM OF THE STUDY This study explored the major anti-inflammatory components of this plant. MATERIALS AND METHODS The ethyl acetate fraction of the ethanol extract from M. conspurcatus was separated using chromatographic techniques. The structures of the isolates were elucidated from NMR, MS and X-ray data as well as from ECD. The anti-inflammatory activities of the isolates from M. conspurcatus were evaluated using LPS-stimulated RAW 264.7 cell models. The production of NO, TNF-α and PGE-2 was determined by ELISA and Griess tests. The expression levels of COX-2, NF-κB/p65 and iNOS were measured by western blotting. RESULTS Two new diterpenoids, malloconspur A (1) and malloconspur B (2), and sixteen known terpenoids (3-18) were identified by comprehensive spectroscopic analyses and comparison with literature data. Malloconspur B (2) and 17-hydroxycleistantha-12,15-dien-3-one (3) substantially inhibited the release of NO with IC50 values of 10.47 μM and 9.32 μM, respectively. Compounds 1, 2 and 3 markedly decreased the secretion of PGE2 and TNF-α (P < 0.01) by LPS-induced RAW264.7 cells. Compounds 2 and 3 markedly decreased iNOS, NF-κB/p65 and COX-2 protein expression. CONCLUSIONS Our identification of these diterpenoids provides strong evidence for the use of M. conspurcatus among the Yao people as a medicinal plant for the treatment of inflammation. The dramatic differences in the chemical structures of the active diterpenoids of this plant from those on the market suggest these compounds have potential as anti-inflammatory lead compounds for follow-up research.
Collapse
Affiliation(s)
- Yanjun Zhang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemical & Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China; School of Petroleum and Chemical Engineering, Qinzhou University, Qinzhou 535000, China
| | - Xishan Huang
- School of Chemistry, SunYat-sen University, Guangzhou 510275, China
| | - Huangcan Chen
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemical & Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Dexiong Zhou
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemical & Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Zhengmin Yang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemical & Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Ke Wang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemical & Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Wei Liu
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemical & Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Shengping Deng
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemical & Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Ruiyun Yang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemical & Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Jun Li
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemical & Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.
| | - Ruijie He
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemical & Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China; Guangxi Key Laboratory of Functional Phytochemicals Research and Utilization, Guangxi Institute of Botany, Guilin 541006, China.
| |
Collapse
|
12
|
Guan F, Lam W, Hu R, Kim YK, Han H, Cheng YC. Majority of Chinese Medicine Herb Category "Qing Re Yao" Have Multiple Mechanisms of Anti-inflammatory Activity. Sci Rep 2018; 8:7416. [PMID: 29743639 PMCID: PMC5943244 DOI: 10.1038/s41598-018-25813-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 04/24/2018] [Indexed: 11/14/2022] Open
Abstract
Herbs categorized as “Qing Re Yao” are translated into “medicine that removes heat” where heat symptoms strongly resemble inflammation. 226 herbs, among those 54 herbs are classified as “Qing Re Yao”, were studied on six key mechanisms of inflammation: COX2, iNOS activity, and the pathways of IL-6, IFNγ, TNF-α and glucocorticoid in order to assess if the majority of this family of herbs have anti-inflammatory activity. 96% demonstrated at least one anti-inflammatory process or innate immunity modular activity, and 72% could affect one anti-inflammatory process. Of the, 54 “Qing Re Yao” 68% affect at least 2 mechanism compared to only 4% (47 herbs) in the “Bu Yi Yao” category that are used to “tonify body energy” and prevent diseases. Moreover 43% of “Qing Re Yao” herbs affect 3 or more mechanisms while none of the “Bu Yi Yao” have this poly-mechanism quality. Additionally “Qing Re Yao” herbs exhibiting activity against STAT3 or GAS could have downstream effects on these target genes and their pathways. Our study addresses the key action on why “Qing Re Yao” work on inflammation. This study also demonstrates the utility in isolating anti-inflammatory substances to be used as a lead for drug discovery and development.
Collapse
Affiliation(s)
- Fulan Guan
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, 06510, USA
| | - Wing Lam
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, 06510, USA
| | - Rong Hu
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, 06510, USA
| | - Yun Kyung Kim
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, 06510, USA
| | - Hua Han
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, 06510, USA
| | - Yung-Chi Cheng
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, 06510, USA.
| |
Collapse
|
13
|
Liu C, Liao JZ, Li PY. Traditional Chinese herbal extracts inducing autophagy as a novel approach in therapy of nonalcoholic fatty liver disease. World J Gastroenterol 2017; 23:1964-1973. [PMID: 28373762 PMCID: PMC5360637 DOI: 10.3748/wjg.v23.i11.1964] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 12/23/2016] [Accepted: 01/18/2017] [Indexed: 02/07/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is one of the leading causes of chronic liver diseases around the world due to the modern sedentary and food-abundant lifestyle, which is characterized by excessive fat accumulation in the liver related with causes other than alcohol abuse. It is widely acknowledged that insulin resistance, dysfunctional lipid metabolism, endoplasmic reticulum stress, oxidative stress, inflammation, and apoptosis/necrosis may all contribute to NAFLD. Autophagy is a protective self-digestion of intracellular organelles, including lipid droplets (lipophagy), in response to stress to maintain homeostasis. Lipophagy is another pathway for lipid degradation besides lipolysis. It is reported that impaired autophagy also contributes to NAFLD. Some studies have suggested that the histological characteristics of NAFLD (steatosis, lobular inflammation, and peri-sinusoid fibrosis) might be improved by treatment with traditional Chinese herbal extracts, while autophagy may be induced. This review will provide insights into the characteristics of autophagy in NAFLD and the related role/mechanisms of autophagy induced by traditional Chinese herbal extracts such as resveratrol, Lycium barbarum polysaccharides, dioscin, bergamot polyphenol fraction, capsaicin, and garlic-derived S-allylmercaptocysteine, which may inhibit the progression of NAFLD. Regulation of autophagy/lipophagy with traditional Chinese herbal extracts may be a novel approach for treating NAFLD, and the molecular mechanisms should be elucidated further in the near future.
Collapse
|
14
|
Wu P, Gao H, Liu JX, Liu L, Zhou H, Liu ZQ. Triterpenoid saponins with anti-inflammatory activities from Ilex pubescens roots. PHYTOCHEMISTRY 2017; 134:122-132. [PMID: 27912969 DOI: 10.1016/j.phytochem.2016.11.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 11/21/2016] [Accepted: 11/22/2016] [Indexed: 06/06/2023]
Abstract
Seven triterpenoid saponins, named ilexsaponin I-O, along with twelve known ones, were isolated from the roots of Ilex pubescens. The structures of all compounds were elucidated by use of extensive spectroscopic methods (IR, HR-ESI-MS, and 1D and 2D NMR). Sugar residues obtained after acid hydrolysis were identified by TLC and HPLC. The in vitro anti-inflammatory effects of the triterpenoid saponins were also evaluated in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. Among the isolated saponins, seven compounds were shown to inhibit LPS-induced nitric oxide (NO) and prostaglandin E2 (PGE2) production by suppressing the expression of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2), respectively, in LPS-stimulated RAW 264.7 cells. Ilexsaponin I and β-d-glucopyranosyl 3-β-[β-d-xylopyranosyl-(1 → 2)-β-d-glucopyranosyloxy]-olea-12-en-28-oate exerted more potent anti-inflammatory effects than the other compounds tested.
Collapse
Affiliation(s)
- Peng Wu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Hui Gao
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Jian-Xin Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, People's Republic of China
| | - Liang Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, People's Republic of China
| | - Hua Zhou
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, People's Republic of China.
| | - Zhong-Qiu Liu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, People's Republic of China.
| |
Collapse
|
15
|
Role of Antioxidants and Natural Products in Inflammation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:5276130. [PMID: 27803762 PMCID: PMC5075620 DOI: 10.1155/2016/5276130] [Citation(s) in RCA: 575] [Impact Index Per Article: 63.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 09/07/2016] [Indexed: 12/15/2022]
Abstract
Inflammation is a comprehensive array of physiological response to a foreign organism, including human pathogens, dust particles, and viruses. Inflammations are mainly divided into acute and chronic inflammation depending on various inflammatory processes and cellular mechanisms. Recent investigations have clarified that inflammation is a major factor for the progression of various chronic diseases/disorders, including diabetes, cancer, cardiovascular diseases, eye disorders, arthritis, obesity, autoimmune diseases, and inflammatory bowel disease. Free radical productions from different biological and environmental sources are due to an imbalance of natural antioxidants which further leads to various inflammatory associated diseases. In this review article, we have outlined the inflammatory process and its cellular mechanisms involved in the progression of various chronic modern human diseases. In addition, we have discussed the role of free radicals-induced tissue damage, antioxidant defence, and molecular mechanisms in chronic inflammatory diseases/disorders. The systematic knowledge regarding the role of inflammation and its associated adverse effects can provide a clear understanding in the development of innovative therapeutic targets from natural sources that are intended for suppression of various chronic inflammations associated diseases.
Collapse
|
16
|
Nardi GM, Farias Januario AG, Freire CG, Megiolaro F, Schneider K, Perazzoli MRA, Do Nascimento SR, Gon AC, Mariano LNB, Wagner G, Niero R, Locatelli C. Anti-inflammatory Activity of Berry Fruits in Mice Model of Inflammation is Based on Oxidative Stress Modulation. Pharmacognosy Res 2016; 8:S42-9. [PMID: 27114691 PMCID: PMC4821106 DOI: 10.4103/0974-8490.178642] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Many fruits have been used as nutraceuticals because the presence of bioactive molecules that play biological activities. OBJECTIVE The present study was designed to compare the anti-inflammatory and antioxidant effects of methanolic extracts of Lycium barbarum (GOJI), Vaccinium macrocarpon (CRAN) and Vaccinium myrtillus (BLUE). MATERIALS AND METHODS Mices were treated with extracts (50 and 200 mg/kg, p.o.), twice a day through 10 days. Phytochemical analysis was performed by high-performance liquid chromatography. Antioxidant activity was determine by 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, reducing power, lipid peroxidation thiobarbituric acid reactive substances (TBARS), reduced glutathione (GSH) and catalase (CAT) activity. Anti-inflammatory activity was evaluated by paw edema followed by determination of myeloperoxidase (MPO) and TBARS. RESULTS High amount of phenolic compounds, including rutin, were identified in all berries extracts. However, quercetin was observed only in BLUE and CRAN. GOJI presents higher scavenging activity of DPPH radical and reducing power than BLUE and CRAN. The extracts improved antioxidant status in liver; BLUE showed the largest reduction (75.3%) in TBARS when compared to CRAN (70.7%) and GOJI (65.3%). Nonetheless, CAT activity was lower in BLUE group. However, hepatic concentrations of GSH were higher in animals treated with GOJI rather than CRAN and BLUE. Despite all fruits caused a remarkable reduction in paw edema and TBARS, only BLUE and CRAN were able to reduce MPO. CONCLUSION These results suggest that quercetin, rutin, or other phenolic compound found in these berry fruits extracts could produce an anti-inflammatory response based on modulation of oxidative stress in paw edema model. SUMMARY Within fruits broadly consumed because of its nutraceuticals properties include, Lycium barbarum (Goji berry), Vaccinium myrtillus (Blueberry or Bilberry) and Vaccinium macrocarpon (Cranberry)The objectives of this study were the investigation and comparison of chemical composition, antioxidant activity "in vitro" and "in vivo" and anti inflammatory property of berry fruits bought dry form.In summary, two main findings can be addressed with this study: (1) Berry fruits presented antioxidant and anti inflammatory activities "in vitro" and "in vivo"; (2) the extracts of GOJI, CRAN, and BLUE modulate the inflammatory process by different mechanisms.
Collapse
Affiliation(s)
- Geisson Marcos Nardi
- Laboratory of Pharmacology, Life Sciences Branch, University of the West of Santa Catarina - Unoesc, Brazil
| | | | - Cassio Geremia Freire
- Post Graduate Program in Science and Biotechnology, Branch of Biotechnology, University of the West of Santa Catarina - Unoesc, Brazil
| | - Fernanda Megiolaro
- Post Graduate Program in Science and Biotechnology, Branch of Biotechnology, University of the West of Santa Catarina - Unoesc, Brazil
| | - Kétlin Schneider
- Post Graduate Program in Science and Biotechnology, Branch of Biotechnology, University of the West of Santa Catarina - Unoesc, Brazil
| | | | - Scheley Raap Do Nascimento
- Laboratory of Pharmacology, Life Sciences Branch, University of the West of Santa Catarina - Unoesc, Brazil
| | - Ana Cristina Gon
- Post Graduate Program in Pharmaceutical Sciences and Chemical-Pharmaceutical Investigations Center, University of Itajaí Valley - Univali, Brazil
| | - Luísa Nathália Bolda Mariano
- Post Graduate Program in Pharmaceutical Sciences and Chemical-Pharmaceutical Investigations Center, University of Itajaí Valley - Univali, Brazil
| | - Glauber Wagner
- Laboratory of Infectious and Parasitic Diseases, Life Sciences Branch, University of the West of Santa Catarina - Unoesc, Brazil
| | - Rivaldo Niero
- Post Graduate Program in Pharmaceutical Sciences and Chemical-Pharmaceutical Investigations Center, University of Itajaí Valley - Univali, Brazil
| | - Claudriana Locatelli
- Post Graduate Program in Science and Biotechnology, Branch of Biotechnology, University of the West of Santa Catarina - Unoesc, Brazil
| |
Collapse
|
17
|
Kim JH, Kim EY, Lee B, Min JH, Song DU, Lim JM, Eom JW, Yeom M, Jung HS, Sohn Y. The effects of Lycii Radicis Cortex on RANKL-induced osteoclast differentiation and activation in RAW 264.7 cells. Int J Mol Med 2016; 37:649-58. [PMID: 26848104 PMCID: PMC4771095 DOI: 10.3892/ijmm.2016.2477] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 01/25/2016] [Indexed: 01/16/2023] Open
Abstract
Post-menopausal osteoporosis is a serious age-related disease. After the menopause, estrogen deficiency is common, and excessive osteoclast activity causes osteoporosis. Osteoclasts are multinucleated cells generated from the differentiation of monocyte/macrophage precursor cells such as RAW 264.7 cells. The water extract of Lycii Radicis Cortex (LRC) is made from the dried root bark of Lycium chinense Mill. and is termed 'Jigolpi' in Korea. Its effects on osteoclastogenesis and post‑menopausal osteoporosis had not previously been tested. In the present study, the effect of LRC on receptor activator of nuclear factor-κB (NF-κB) ligand (RANKL)-induced osteoclast differentiation was demonstrated using a tartrate-resistant acid phosphatase (TRAP) assay and pit formation assay. Moreover, in order to analyze molecular mechanisms, we studied osteoclastogenesis-related markers such as nuclear factor of activated T-cells cytoplasmic 1 (NFATc1), c-Fos, receptor activator of NF-κB (RANK), TRAP, cathepsin K (CTK), matrix metallopeptidase-9 (MMP-9), calcitonin receptor (CTR) and carbonic anhydrase Ⅱ (CAII) using RT-qPCR and western blot analysis. Additionally, we also determined the effect of LRC on an ovariectomized (OVX) rat model. We noted that LRC inhibited RANKL-induced osteoclast differentiation via suppressing osteoclastogenesis-related markers. It also inhibited osteoporosis in the OVX rat model by decreasing loss of bone density and trabecular area. These results suggest that LRC exerts a positive effect on menopausal osteoporosis.
Collapse
Affiliation(s)
- Jae-Hyun Kim
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Eun-Young Kim
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Bina Lee
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Ju-Hee Min
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Dea-Uk Song
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Jeong-Min Lim
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Ji Whan Eom
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Mijung Yeom
- Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Hyuk-Sang Jung
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Youngjoo Sohn
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, Seoul 130-701, Republic of Korea
| |
Collapse
|
18
|
The Roots of Atractylodes macrocephala Koidzumi Enhanced Glucose and Lipid Metabolism in C2C12 Myotubes via Mitochondrial Regulation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:643654. [PMID: 26617661 PMCID: PMC4649076 DOI: 10.1155/2015/643654] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 09/18/2015] [Accepted: 10/18/2015] [Indexed: 12/25/2022]
Abstract
The root of Atractylodes macrocephala Koidzumi (Atractylodis Rhizoma Alba, ARA) is a Traditional Korean Medicine and has been commonly used for weight control. Mitochondrial dysfunction appears to be a key contributor to insulin resistance, and therefore mitochondrial targeting drugs represent an important potential strategy for the treatment of insulin resistance and obesity. In this study, the authors investigated the regulatory effects of ARA on mitochondrial function with respect to the stimulation of glucose and lipid metabolism in C2C12 myotubes. After differentiating C2C12 myotubes, cells were treated with or without different concentrations (0.2, 0.5, and 1.0 mg/mL) of ARA extract. ARA extract significantly increased the expression of peroxisome proliferator-activated receptor coactivator 1 alpha (PGC1α) and the downregulations of its targets, nuclear respiratory factor-1 (NRF-1), transcription factor A (TFAM), and total ATP content in C2C12 myotubes. ARA extract also increased the expressions of PGC1α activator and of the metabolic sensors, AMP-activated protein kinase (AMPK), and acetyl-CoA carboxylase and sirtuin (SIRT) 1. Furthermore, it significantly increased glucose uptake by enhancing glucose consumption and subsequently decreased FFA contents and increased carnitine palmitoyltransferase (CPT) 1b expression. Our study indicates that ARA has a potential for stimulating mitochondrial function and energy metabolism in muscle.
Collapse
|
19
|
Li KC, Ho YL, Huang GJ, Chang YS. Anti-Oxidative and Anti-Inflammatory Effects of Lobelia chinensis In Vitro and In Vivo. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2015; 43:269-87. [PMID: 25787301 DOI: 10.1142/s0192415x15500184] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Lobelia chinensis Lour (LcL) is a popular herb that has been widely used as folk medicine in China for the treatment of fever, lung cancer, and inflammation for hundreds of years. Recently, several studies have shown that the anti-inflammatory properties were correlated with the inhibition of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) from the NF-κB pathway. The aim of this study was to evaluate the anti-oxidative and anti-inflammatory activities of L. chinensis. Both suppressive activities on LPS-induced nitric oxide production in RAW264.7 macrophages in vitro and the acute rat lung injury model in vivo were studied. The results showed that the methanol extract of LcL and its fractions within the range of 62.5–250 μg/mL did not induce cytotoxicity (p < 0.001). The ethyl acetate fraction of LcL showed better NO inhibition activity than other fractions. On the other hand, the Lc-EA (62.5, 125, 250 mg/kg) pretreated rats showed a decrease in the pro-inflammatory cytokines (TNF-α, IL-β, IL-6) and inhibited iNOS, COX-2 expression through the NF-κB pathway. These results suggested that L. chinensis exhibited an anti-inflammatory effect through the NF-κB pathways.
Collapse
Affiliation(s)
- Kun-Cheng Li
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Pharmacy, China Medical University Hospital, Taichung 404, Taiwan
| | - Yu-Ling Ho
- Department of Nursing, Hungkuang University, Taichung 433, Taiwan
| | - Guan-Jhong Huang
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Pharmacy, China Medical University Hospital, Taichung 404, Taiwan
| | - Yuan-Shiun Chang
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Pharmacy, China Medical University Hospital, Taichung 404, Taiwan
- Chinese Crude Drug Pharmacy, China Medical University Hospital, Taichung 404, Taiwan
| |
Collapse
|