1
|
Yogarajan G, Alsubaie N, Rajasekaran G, Revathi T, Alqahtani MS, Abbas M, Alshahrani MM, Soufiene BO. EEG-based epileptic seizure detection using binary dragonfly algorithm and deep neural network. Sci Rep 2023; 13:17710. [PMID: 37853025 PMCID: PMC10584945 DOI: 10.1038/s41598-023-44318-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 10/06/2023] [Indexed: 10/20/2023] Open
Abstract
Electroencephalogram (EEG) is one of the most common methods used for seizure detection as it records the electrical activity of the brain. Symmetry and asymmetry of EEG signals can be used as indicators of epileptic seizures. Normally, EEG signals are symmetrical in nature, with similar patterns on both sides of the brain. However, during a seizure, there may be a sudden increase in the electrical activity in one hemisphere of the brain, causing asymmetry in the EEG signal. In patients with epilepsy, interictal EEG may show asymmetric spikes or sharp waves, indicating the presence of epileptic activity. Therefore, the detection of symmetry/asymmetry in EEG signals can be used as a useful tool in the diagnosis and management of epilepsy. However, it should be noted that EEG findings should always be interpreted in conjunction with the patient's clinical history and other diagnostic tests. In this paper, we propose an EEG-based improved automatic seizure detection system using a Deep neural network (DNN) and Binary dragonfly algorithm (BDFA). The DNN model learns the characteristics of the EEG signals through nine different statistical and Hjorth parameters extracted from various levels of decomposed signals obtained by using the Stationary Wavelet Transform. Next, the extracted features were reduced using the BDFA which helps to train DNN faster and improve its performance. The results show that the extracted features help to differentiate the normal, interictal, and ictal signals effectively with 100% accuracy, sensitivity, specificity, and F1 score with a 13% selected feature subset when compared to the existing approaches.
Collapse
Affiliation(s)
- G Yogarajan
- Department of Information Technology, Mepco Schlenk Engineering College, Sivakasi, Tamil Nadu, 626005, India
| | - Najah Alsubaie
- Department of Computer Sciences, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University (PNU), P.O. Box 84428, 11671, Riyadh, Saudi Arabia
| | - G Rajasekaran
- Department of Information Technology, Mepco Schlenk Engineering College, Sivakasi, Tamil Nadu, 626005, India
| | - T Revathi
- Department of Information Technology, Mepco Schlenk Engineering College, Sivakasi, Tamil Nadu, 626005, India
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, 61421, Abha, Saudi Arabia
- BioImaging Unit, Space Research Centre, University of Leicester, Michael Atiyah Building, Leicester, LE1 7RH, UK
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, 61421, Abha, Saudi Arabia
| | | | - Ben Othman Soufiene
- PRINCE Laboratory Research, ISITcom, Hammam Sousse, University of Sousse, Sousse, Tunisia.
| |
Collapse
|
2
|
Kataria P, Dogra A, Sharma T, Goyal B. Trends in DNN Model Based Classification and Segmentation of Brain Tumor Detection. Open Neuroimag J 2022. [DOI: 10.2174/18744400-v15-e2206290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background:
Due to the complexities of scrutinizing and diagnosing brain tumors from MR images, brain tumor analysis has become one of the most indispensable concerns. Characterization of a brain tumor before any treatment, such as radiotherapy, requires decisive treatment planning and accurate implementation. As a result, early detection of brain tumors is imperative for better clinical outcomes and subsequent patient survival.
Introduction:
Brain tumor segmentation is a crucial task in medical image analysis. Because of tumor heterogeneity and varied intensity patterns, manual segmentation takes a long time, limiting the use of accurate quantitative interventions in clinical practice. Automated computer-based brain tumor image processing has become more valuable with technological advancement. With various imaging and statistical analysis tools, deep learning algorithms offer a viable option to enable health care practitioners to rule out the disease and estimate the growth.
Methods:
This article presents a comprehensive evaluation of conventional machine learning models as well as evolving deep learning techniques for brain tumor segmentation and classification.
Conclusion:
In this manuscript, a hierarchical review has been presented for brain tumor segmentation and detection. It is found that the segmentation methods hold a wide margin of improvement in the context of the implementation of adaptive thresholding and segmentation methods, the feature training and mapping requires redundancy correction, the input data training needs to be more exhaustive and the detection algorithms are required to be robust in terms of handling online input data analysis/tumor detection.
Collapse
|
3
|
Ge M, Sun C, Zhang X, Coutier-Delgosha O, Zhang G. Synchrotron X-ray based particle image velocimetry to measure multiphase streamflow and densitometry. Radiat Phys Chem Oxf Engl 1993 2022. [DOI: 10.1016/j.radphyschem.2022.110395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
4
|
Al-Shatnawi AM, Al-Saqqar F, Souri A. Arabic Handwritten Word Recognition Based on Stationary Wavelet Transform Technique using Machine Learning. ACM T ASIAN LOW-RESO 2022. [DOI: 10.1145/3474391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
This paper is aimed at improving the performance of the
word recognition system (WRS)
of handwritten Arabic text by extracting features in the frequency domain using the
Stationary Wavelet Transform (SWT)
method using machine learning, which is a wavelet transform approach created to compensate for the absence of translation invariance in the
Discrete Wavelets Transform (DWT)
method. The proposed SWT-WRS of Arabic handwritten text consists of three main processes: word normalization, feature extraction based on SWT, and recognition. The proposed SWT-WRS based on the SWT method is evaluated on the IFN/ENIT database applying the Gaussian, linear, and polynomial support vector machine, the k-nearest neighbors, and ANN classifiers. ANN performance was assessed by applying the
Bayesian Regularization (BR)
and
Levenberg-Marquardt (LM)
training methods. Numerous
wavelet transform (WT)
families are applied, and the results prove that level 19 of the Daubechies family is the best WT family for the proposed SWT-WRS. The results also confirm the effectiveness of the proposed SWT-WRS in improving the performance of handwritten Arabic word recognition using machine learning. Therefore, the suggested SWT-WRS overcomes the lack of translation invariance in the DWT method by eliminating the up-and-down samplers from the proposed machine learning method.
Collapse
Affiliation(s)
- Atallah Mahmoud Al-Shatnawi
- Information Systems Department, Prince Hussein Bin Abdullah College for Information Technology, Al al-Bayt University, Mafraq, Jordan
| | - Faisal Al-Saqqar
- Computer Science Department, Prince Hussein Bin Abdullah College for Information Technology, Al al-Bayt University, Mafraq, Jordan
| | - Alireza Souri
- Department of Computer Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran, Department of Computer Engineering, Haliç University, Beyoğlu, İstanbul, Turkey
| |
Collapse
|
5
|
Taghavirashidizadeh A, Sharifi F, Vahabi SA, Hejazi A, SaghabTorbati M, Mohammed AS. WTD-PSD: Presentation of Novel Feature Extraction Method Based on Discrete Wavelet Transformation and Time-Dependent Power Spectrum Descriptors for Diagnosis of Alzheimer's Disease. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:9554768. [PMID: 35602645 PMCID: PMC9117080 DOI: 10.1155/2022/9554768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 02/02/2022] [Accepted: 02/25/2022] [Indexed: 01/15/2023]
Abstract
Alzheimer's disease (AD) is a type of dementia that affects the elderly population. A machine learning (ML) system has been trained to recognize particular patterns to diagnose AD using an algorithm in an ML system. As a result, developing a feature extraction approach is critical for reducing calculation time. The input image in this article is a Two-Dimensional Discrete Wavelet (2D-DWT). The Time-Dependent Power Spectrum Descriptors (TD-PSD) model is used to represent the subbanded wavelet coefficients. The principal property vector is made up of the characteristics of the TD-PSD model. Based on classification algorithms, the collected characteristics are applied independently to present AD classifications. The categorization is used to determine the kind of tumor. The TD-PSD method was used to extract wavelet subbands features from three sets of test samples: moderate cognitive impairment (MCI), AD, and healthy controls (HC). The outcomes of three modes of classic classification methods, including KNN, SVM, Decision Tree, and LDA approaches, are documented, as well as the final feature employed in each. Finally, we show the CNN architecture for AD patient classification. Output assessment is used to show the results. Other techniques are outperformed by the given CNN and DT.
Collapse
Affiliation(s)
- Ali Taghavirashidizadeh
- Islamic Azad University, Central Tehran Branch (IAUCTB), Department of Electrical and Electronics Engineering, Tehran, Iran
| | - Fatemeh Sharifi
- Department of Electrical Engineering, University of Applied Science and Technology, Bushehr, Iran
| | - Seyed Amir Vahabi
- Department of Computer Engineering, Deylaman Institute of Higher Education, Lahijan, Iran
| | - Aslan Hejazi
- Department of Electrical Engineering, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mehrnaz SaghabTorbati
- Department of Biomedical Engineering, Faculty of Electrical Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Amin Salih Mohammed
- Department of Computer Engineering, College of Engineering and Computer Science, Lebanese French University, Erbil, Kurdistan Region, Iraq
- Department of Software and Informatics Engineering, Salahaddin University, Erbil, Kurdistan Region, Iraq
| |
Collapse
|
6
|
Ahmadi-Dastgerdi N, Hosseini-Nejad H, Amiri H, Shoeibi A, Gorriz JM. A Vector Quantization-Based Spike Compression Approach Dedicated to Multichannel Neural Recording Microsystems. Int J Neural Syst 2021; 32:2250001. [PMID: 34931938 DOI: 10.1142/s0129065722500010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Implantable high-density multichannel neural recording microsystems provide simultaneous recording of brain activities. Wireless transmission of the entire recorded data causes high bandwidth usage, which is not tolerable for implantable applications. As a result, a hardware-friendly compression module is required to reduce the amount of data before it is transmitted. This paper presents a novel compression approach that utilizes a spike extractor and a vector quantization (VQ)-based spike compressor. In this approach, extracted spikes are vector quantized using an unsupervised learning process providing a high spike compression ratio (CR) of 10-80. A combination of extracting and compressing neural spikes results in a significant data reduction as well as preserving the spike waveshapes. The compression performance of the proposed approach was evaluated under variant conditions. We also developed new architectures such that the hardware blocks of our approach can be implemented more efficiently. The compression module was implemented in a 180-nm standard CMOS process achieving a SNDR of 14.49[Formula: see text]dB and a classification accuracy (CA) of 99.62% at a CR of 20, while consuming 4[Formula: see text][Formula: see text]W power and 0.16[Formula: see text]mm2 chip area per channel.
Collapse
Affiliation(s)
| | | | - Hadi Amiri
- School of Engineering Science, College of Engineering, University of Tehran, Tehran, Iran
| | - Afshin Shoeibi
- Faculty of Electrical Engineering, FPGA Research Lab K. N. Toosi, University of Technology, Tehran, Iran
| | - Juan Manuel Gorriz
- Department of Signal Processing Networking and Communications, University of Granada, Granada, Spain.,Department of Psychiatry, University of Cambridge, Cambridge, UK
| |
Collapse
|
7
|
Fayaz M, Torokeldiev N, Turdumamatov S, Qureshi MS, Qureshi MB, Gwak J. An Efficient Methodology for Brain MRI Classification Based on DWT and Convolutional Neural Network. SENSORS 2021; 21:s21227480. [PMID: 34833556 PMCID: PMC8619601 DOI: 10.3390/s21227480] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/01/2021] [Accepted: 11/08/2021] [Indexed: 12/21/2022]
Abstract
In this paper, a model based on discrete wavelet transform and convolutional neural network for brain MR image classification has been proposed. The proposed model is comprised of three main stages, namely preprocessing, feature extraction, and classification. In the preprocessing, the median filter has been applied to remove salt-and-pepper noise from the brain MRI images. In the discrete wavelet transform, discrete Harr wavelet transform has been used. In the proposed model, 3-level Harr wavelet decomposition has been applied on the images to remove low-level detail and reduce the size of the images. Next, the convolutional neural network has been used for classifying the brain MR images into normal and abnormal. The convolutional neural network is also a prevalent classification method and has been widely used in different areas. In this study, the convolutional neural network has been used for brain MRI classification. The proposed methodology has been applied to the standard dataset, and for performance evaluation, we have used different performance evaluation measures. The results indicate that the proposed method provides good results with 99% accuracy. The proposed method results are then presented for comparison with some state-of-the-art algorithms where simply the proposed method outperforms the counterpart algorithms. The proposed model has been developed to be used for practical applications.
Collapse
Affiliation(s)
- Muhammad Fayaz
- Department of Computer Science, University of Central Asia, 310 Lenin Street, Naryn 722918, Kyrgyzstan; (M.F.); (M.S.Q.)
| | - Nurlan Torokeldiev
- Department of Mathematics and Natural Sciences, University of Central Asia, Khorog 736, Tajikistan;
| | - Samat Turdumamatov
- Department of Mathematics and Natural Sciences, University of Central Asia, 310 Lenin Street, Naryn 722918, Kyrgyzstan;
| | - Muhammad Shuaib Qureshi
- Department of Computer Science, University of Central Asia, 310 Lenin Street, Naryn 722918, Kyrgyzstan; (M.F.); (M.S.Q.)
| | - Muhammad Bilal Qureshi
- Department of Computer Science and IT, University of Lakki Marwat, Lakki Marwat 28420, KPK, Pakistan;
| | - Jeonghwan Gwak
- Department of Software, Korea National University of Transportation, Chungju 27469, Korea
- Department of Biomedical Engineering, Korea National University of Transportation, Chungju 27469, Korea
- Department of AI Robotics Engineering, Korea National University of Transportation, Chungju 27469, Korea
- Department of IT & Energy Convergence (BK21 FOUR), Korea National University of Transportation, Chungju 27469, Korea
- Correspondence: ; Tel.: +82-43-841-5852
| |
Collapse
|
8
|
Pidchayathanakorn P, Supratid S. An assessment of noise variance estimations in Bayes threshold denoising under stationary wavelet domain on brain lesions and tumor MRIs. DATA TECHNOLOGIES AND APPLICATIONS 2021. [DOI: 10.1108/dta-09-2020-0221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
PurposeA major key success factor regarding proficient Bayes threshold denoising refers to noise variance estimation. This paper focuses on assessing different noise variance estimations in three Bayes threshold models on two different characteristic brain lesions/tumor magnetic resonance imaging (MRIs).Design/methodology/approachHere, three Bayes threshold denoising models based on different noise variance estimations under the stationary wavelet transforms (SWT) domain are mainly assessed, compared to state-of-the-art non-local means (NLMs). Each of those three models, namely D1, GB and DR models, respectively, depends on the most detail wavelet subband at the first resolution level, on the entirely global detail subbands and on the detail subband in each direction/resolution. Explicit and implicit denoising performance are consecutively assessed by threshold denoising and segmentation identification results.FindingsImplicit performance assessment points the first–second best accuracy, 0.9181 and 0.9048 Dice similarity coefficient (Dice), sequentially yielded by GB and DR; reliability is indicated by 45.66% Dice dropping of DR, compared against 53.38, 61.03 and 35.48% of D1 GB and NLMs, when increasing 0.2 to 0.9 noise level on brain lesions MRI. For brain tumor MRI under 0.2 noise level, it denotes the best accuracy of 0.9592 Dice, resulted by DR; however, 8.09% Dice dropping of DR, relative to 6.72%, 8.85 and 39.36% of D1, GB and NLMs is denoted. The lowest explicit and implicit denoising performances of NLMs are obviously pointed.Research limitations/implicationsA future improvement of denoising performance possibly refers to creating a semi-supervised denoising conjunction model. Such model utilizes the denoised MRIs, resulted by DR and D1 thresholding model as uncorrupted image version along with the noisy MRIs, representing corrupted version ones during autoencoder training phase, to reconstruct the original clean image.Practical implicationsThis paper should be of interest to readers in the areas of technologies of computing and information science, including data science and applications, computational health informatics, especially applied as a decision support tool for medical image processing.Originality/valueIn most cases, DR and D1 provide the first–second best implicit performances in terms of accuracy and reliability on both simulated, low-detail small-size region-of-interest (ROI) brain lesions and realistic, high-detail large-size ROI brain tumor MRIs.
Collapse
|
9
|
Wang S, Lv J, He Z, Liang D, Chen Y, Zhang M, Liu Q. Denoising auto-encoding priors in undecimated wavelet domain for MR image reconstruction. Neurocomputing 2021. [DOI: 10.1016/j.neucom.2020.09.086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
10
|
Kim J, Sung D, Koh M, Kim J, Park KS. Electrocardiogram authentication method robust to dynamic morphological conditions. IET BIOMETRICS 2019. [DOI: 10.1049/iet-bmt.2018.5183] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Jeehoon Kim
- Interdisciplinary Program in BioengineeringSeoul National UniversitySeoulRepublic of Korea
| | - Dongsuk Sung
- Electrical and Computer EngineeringGeorgia Institute of TechnologyAtlantaGAUSA
| | - MyungJun Koh
- Non‐Destructive TestingDresden International University GmbHDresdenGermany
| | - Jason Kim
- Korea Internet and Security AgencyNajuRepublic of Korea
| | - Kwang Suk Park
- Interdisciplinary Program in BioengineeringSeoul National UniversitySeoulRepublic of Korea
- Department of Biomedical Engineering, College of MedicineSeoul National UniversitySeoulRepublic of Korea
| |
Collapse
|
11
|
Mittal M, Goyal LM, Kaur S, Kaur I, Verma A, Jude Hemanth D. Deep learning based enhanced tumor segmentation approach for MR brain images. Appl Soft Comput 2019. [DOI: 10.1016/j.asoc.2019.02.036] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
12
|
Shimron E, Webb AG, Azhari H. CORE-PI: Non-iterative convolution-based reconstruction for parallel MRI in the wavelet domain. Med Phys 2018; 46:199-214. [DOI: 10.1002/mp.13260] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 09/17/2018] [Accepted: 10/09/2018] [Indexed: 01/08/2023] Open
Affiliation(s)
- Efrat Shimron
- Department of Biomedical Engineering; Technion - Israel Institute of Technology; Haifa 3200003 Israel
| | - Andrew G. Webb
- C.J. Gorter Center for High Field MRI; Department of Radiology; Leiden University Medical Center; Albinusdreef 2 2333 ZA Leiden The Netherlands
| | - Haim Azhari
- Department of Biomedical Engineering; Technion - Israel Institute of Technology; Haifa 3200003 Israel
| |
Collapse
|
13
|
A Novel Compressed Sensing Method for Magnetic Resonance Imaging: Exponential Wavelet Iterative Shrinkage-Thresholding Algorithm with Random Shift. Int J Biomed Imaging 2016; 2016:9416435. [PMID: 27066068 PMCID: PMC4811091 DOI: 10.1155/2016/9416435] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 02/23/2016] [Indexed: 12/05/2022] Open
Abstract
Aim. It can help improve the hospital throughput to accelerate magnetic resonance imaging (MRI) scanning. Patients will benefit from less waiting time. Task. In the last decade, various rapid MRI techniques on the basis of compressed sensing (CS) were proposed. However, both computation time and reconstruction quality of traditional CS-MRI did not meet the requirement of clinical use. Method. In this study, a novel method was proposed with the name of exponential wavelet iterative shrinkage-thresholding algorithm with random shift (abbreviated as EWISTARS). It is composed of three successful components: (i) exponential wavelet transform, (ii) iterative shrinkage-thresholding algorithm, and (iii) random shift. Results. Experimental results validated that, compared to state-of-the-art approaches, EWISTARS obtained the least mean absolute error, the least mean-squared error, and the highest peak signal-to-noise ratio. Conclusion. EWISTARS is superior to state-of-the-art approaches.
Collapse
|
14
|
An MR brain images classifier system via particle swarm optimization and kernel support vector machine. ScientificWorldJournal 2013; 2013:130134. [PMID: 24163610 PMCID: PMC3791634 DOI: 10.1155/2013/130134] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 08/13/2013] [Indexed: 11/18/2022] Open
Abstract
Automated abnormal brain detection is extremely of importance for clinical diagnosis. Over last decades numerous methods had been presented. In this paper, we proposed a novel hybrid system to classify a given MR brain image as either normal or abnormal. The proposed method first employed digital wavelet transform to extract features then used principal component analysis (PCA) to reduce the feature space. Afterwards, we constructed a kernel support vector machine (KSVM) with RBF kernel, using particle swarm optimization (PSO) to optimize the parameters C and σ. Fivefold cross-validation was utilized to avoid overfitting. In the experimental procedure, we created a 90 images dataset brain downloaded from Harvard Medical School website. The abnormal brain MR images consist of the following diseases: glioma, metastatic adenocarcinoma, metastatic bronchogenic carcinoma, meningioma, sarcoma, Alzheimer, Huntington, motor neuron disease, cerebral calcinosis, Pick's disease, Alzheimer plus visual agnosia, multiple sclerosis, AIDS dementia, Lyme encephalopathy, herpes encephalitis, Creutzfeld-Jakob disease, and cerebral toxoplasmosis. The 5-folded cross-validation classification results showed that our method achieved 97.78% classification accuracy, higher than 86.22% by BP-NN and 91.33% by RBF-NN. For the parameter selection, we compared PSO with those of random selection method. The results showed that the PSO is more effective to build optimal KSVM.
Collapse
|