1
|
Mostashari Rad T, Saghaie L, Fassihi A. HIV-1 Entry Inhibitors: A Review of Experimental and Computational Studies. Chem Biodivers 2018; 15:e1800159. [PMID: 30027572 DOI: 10.1002/cbdv.201800159] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 07/18/2018] [Indexed: 12/18/2022]
Abstract
The HIV-1 life cycle consists of different events, such as cell entry and fusion, virus replication, assembly and release of the newly formed virions. The more logical way to inhibit HIV transmission among individuals is to inhibit its entry into the immune host cells rather than targeting the intracellular viral enzymes. Both viral and host cell surface receptors and co-receptors are regarded as potential targets in anti-HIV-1 drug design process. Because of the importance of this topic it was decided to summarize recent reports on small-molecule HIV-1 entry inhibitors that have not been considered in the latest released reviews. All the computational studies reported in the literature regarding HIV-1 entry inhibitors since 2014 was also considered in this review.
Collapse
Affiliation(s)
- Tahereh Mostashari Rad
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, 81746-73461, Isfahan, Iran
| | - Lotfollah Saghaie
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, 81746-73461, Isfahan, Iran
| | - Afshin Fassihi
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, 81746-73461, Isfahan, Iran.,Bioinformatics and Systems Biology Department, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, 81746-73461, Isfahan, Iran
| |
Collapse
|
2
|
Wang C, Greene D, Xiao L, Qi R, Luo R. Recent Developments and Applications of the MMPBSA Method. Front Mol Biosci 2018; 4:87. [PMID: 29367919 PMCID: PMC5768160 DOI: 10.3389/fmolb.2017.00087] [Citation(s) in RCA: 399] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 11/30/2017] [Indexed: 12/23/2022] Open
Abstract
The Molecular Mechanics Poisson-Boltzmann Surface Area (MMPBSA) approach has been widely applied as an efficient and reliable free energy simulation method to model molecular recognition, such as for protein-ligand binding interactions. In this review, we focus on recent developments and applications of the MMPBSA method. The methodology review covers solvation terms, the entropy term, extensions to membrane proteins and high-speed screening, and new automation toolkits. Recent applications in various important biomedical and chemical fields are also reviewed. We conclude with a few future directions aimed at making MMPBSA a more robust and efficient method.
Collapse
Affiliation(s)
- Changhao Wang
- Chemical and Materials Physics Graduate Program, University of California, Irvine, Irvine, CA, United States
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
- Department of Physics and Astronomy, University of California, Irvine, Irvine, CA, United States
| | - D'Artagnan Greene
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
| | - Li Xiao
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, United States
| | - Ruxi Qi
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
| | - Ray Luo
- Chemical and Materials Physics Graduate Program, University of California, Irvine, Irvine, CA, United States
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, United States
- Department of Chemical Engineering and Materials Science, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|