1
|
Dietzen M, Kalinina OV, Taškova K, Kneissl B, Hildebrandt AK, Jaenicke E, Decker H, Lengauer T, Hildebrandt A. Large oligomeric complex structures can be computationally assembled by efficiently combining docked interfaces. Proteins 2015; 83:1887-99. [PMID: 26248608 PMCID: PMC5049452 DOI: 10.1002/prot.24873] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 07/20/2015] [Accepted: 07/29/2015] [Indexed: 11/06/2022]
Abstract
Macromolecular oligomeric assemblies are involved in many biochemical processes of living organisms. The benefits of such assemblies in crowded cellular environments include increased reaction rates, efficient feedback regulation, cooperativity and protective functions. However, an atom-level structural determination of large assemblies is challenging due to the size of the complex and the difference in binding affinities of the involved proteins. In this study, we propose a novel combinatorial greedy algorithm for assembling large oligomeric complexes from information on the approximate position of interaction interfaces of pairs of monomers in the complex. Prior information on complex symmetry is not required but rather the symmetry is inferred during assembly. We implement an efficient geometric score, the transformation match score, that bypasses the model ranking problems of state-of-the-art scoring functions by scoring the similarity between the inferred dimers of the same monomer simultaneously with different binding partners in a (sub)complex with a set of pregenerated docking poses. We compiled a diverse benchmark set of 308 homo and heteromeric complexes containing 6 to 60 monomers. To explore the applicability of the method, we considered 48 sets of parameters and selected those three sets of parameters, for which the algorithm can correctly reconstruct the maximum number, namely 252 complexes (81.8%) in, at least one of the respective three runs. The crossvalidation coverage, that is, the mean fraction of correctly reconstructed benchmark complexes during crossvalidation, was 78.1%, which demonstrates the ability of the presented method to correctly reconstruct topology of a large variety of biological complexes.
Collapse
Affiliation(s)
- Matthias Dietzen
- Max Planck Institute for Informatics, Campus E1 4, Saarbrücken, 66123, Germany
| | - Olga V Kalinina
- Max Planck Institute for Informatics, Campus E1 4, Saarbrücken, 66123, Germany
| | - Katerina Taškova
- Institute of Computer Science, Johannes Gutenberg University, Staudingerweg 9, Mainz, 55128, Germany.,Institute for Molecular Biology, Johannes Gutenberg University, Ackermannweg 4, Mainz, 55128, Germany
| | - Benny Kneissl
- Institute of Computer Science, Johannes Gutenberg University, Staudingerweg 9, Mainz, 55128, Germany.,Roche Pharma Research and Early Development, pRED Informatics, Roche Innovation Center Penzberg, Nonnenwald 2, Penzberg, 82377, Germany
| | | | - Elmar Jaenicke
- Institute of Molecular Biophysics, Johannes Gutenberg University, Jakob-Welder-Weg 26, Mainz, 55128, Germany
| | - Heinz Decker
- Institute of Molecular Biophysics, Johannes Gutenberg University, Jakob-Welder-Weg 26, Mainz, 55128, Germany
| | - Thomas Lengauer
- Max Planck Institute for Informatics, Campus E1 4, Saarbrücken, 66123, Germany
| | - Andreas Hildebrandt
- Institute of Computer Science, Johannes Gutenberg University, Staudingerweg 9, Mainz, 55128, Germany
| |
Collapse
|
2
|
Kelm S, Vangone A, Choi Y, Ebejer JP, Shi J, Deane CM. Fragment-based modeling of membrane protein loops: successes, failures, and prospects for the future. Proteins 2013; 82:175-86. [PMID: 23589399 DOI: 10.1002/prot.24299] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 02/22/2013] [Accepted: 03/26/2013] [Indexed: 11/12/2022]
Abstract
Membrane proteins (MPs) have become a major focus in structure prediction, due to their medical importance. There is, however, a lack of fast and reliable methods that specialize in the modeling of MP loops. Often methods designed for soluble proteins (SPs) are applied directly to MPs. In this article, we investigate the validity of such an approach in the realm of fragment-based methods. We also examined the differences in membrane and soluble protein loops that might affect accuracy. We test our ability to predict soluble and MP loops with the previously published method FREAD. We show that it is possible to predict accurately the structure of MP loops using a database of MP fragments (0.5-1 Å median root-mean-square deviation). The presence of homologous proteins in the database helps prediction accuracy. However, even when homologues are removed better results are still achieved using fragments of MPs (0.8-1.6 Å) rather than SPs (1-4 Å) to model MP loops. We find that many fragments of SPs have shapes similar to their MP counterparts but have very different sequences; however, they do not appear to differ in their substitution patterns. Our findings may allow further improvements to fragment-based loop modeling algorithms for MPs. The current version of our proof-of-concept loop modeling protocol produces high-accuracy loop models for MPs and is available as a web server at http://medeller.info/fread.
Collapse
Affiliation(s)
- Sebastian Kelm
- Department of Statistics, University of Oxford, Oxford, United Kingdom
| | | | | | | | | | | |
Collapse
|