1
|
Mthembu MH, Sibiya S, Mlambo ZP, Mkhwanazi NP, Naicker T. Asymmetric Dimethylaminohydrolase Gene Polymorphisms Associated with Preeclampsia Comorbid with HIV Infection in Pregnant Women of African Ancestry. Int J Mol Sci 2025; 26:3271. [PMID: 40244094 PMCID: PMC11989882 DOI: 10.3390/ijms26073271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 03/26/2025] [Accepted: 03/27/2025] [Indexed: 04/18/2025] Open
Abstract
Asymmetric dimethylarginine (ADMA) is an endogenous nitric oxide synthase (NOS) inhibitor associated with vascular disease, which is prevalent in human plasma. Two isoforms of the enzyme dimethylarginine dimethylaminohydrolase (DDAH), DDAH 1 and 2, degrade ADMA. This study investigates the association of DDAH 1 (rs669173, rs7521189) and DDAH 2 gene polymorphisms (rs805305, rs3131383) with the risk of preeclampsia (PE) comorbidity with human immunodeficiency virus (HIV) infection in pregnant women of African ancestry. A total of 405 women were enrolled in this study: 204 were PE, 201 were normotensive pregnant, and 202 were HIV positive. DNA was extracted from whole blood, and SNPs (rs669173, rs7521189, rs805305, and rs3131383) were amplified to detect single-nucleotide polymorphisms (SNPs). After PCR amplification, allelic discrimination was examined. Comparisons were conducted utilizing the Chi-squared test. Our findings indicated that preeclamptic women displayed a greater prevalence of the three variants compared to those with both PE and HIV infection. There is an association between the rs669173 and rs7521189 SNPs of the DDAH 1 gene and rs3131383 of the DDAH 2 gene, which could play a role in reducing the bioavailability of nitric oxide (NO), which affects endothelial function, leading to the development of PE in pregnant women of African ancestry. In contrast, the rs805305 variant of the DDAH 2 gene was not significantly associated with PE development. Interestingly, none of the SNPs investigated correlated with HIV infection or could be attributed to the human allelic variant influence on HIV infection outcome.
Collapse
Affiliation(s)
- Mbuso Herald Mthembu
- Department of Obstetrics and Gynaecology, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban 4041, South Africa;
- Optics and Imaging Centre, Doris Duke Medical Research Institute, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa;
| | - Samukelisiwe Sibiya
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa; (S.S.); (N.P.M.)
| | - Zinhle Pretty Mlambo
- Optics and Imaging Centre, Doris Duke Medical Research Institute, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa;
| | - Nompumelelo P. Mkhwanazi
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa; (S.S.); (N.P.M.)
| | - Thajasvarie Naicker
- Optics and Imaging Centre, Doris Duke Medical Research Institute, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa;
| |
Collapse
|
2
|
Chimusa ER, Alosaimi S, Bope CD. Dissecting Generalizability and Actionability of Disease-Associated Genes From 20 Worldwide Ethnolinguistic Cultural Groups. Front Genet 2022; 13:835713. [PMID: 35812734 PMCID: PMC9263835 DOI: 10.3389/fgene.2022.835713] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/29/2022] [Indexed: 11/30/2022] Open
Abstract
Findings resulting from whole-genome sequencing (WGS) have markedly increased due to the massive evolvement of sequencing methods and have led to further investigations such as clinical actionability of genes, as documented by the American College of Medical Genetics and Genomics (ACMG). ACMG's actionable genes (ACGs) may not necessarily be clinically actionable across all populations worldwide. It is critical to examine the actionability of these genes in different populations. Here, we have leveraged a combined WES from the African Genome Variation and 1000 Genomes Project to examine the generalizability of ACG and potential actionable genes from four diseases: high-burden malaria, TB, HIV/AIDS, and sickle cell disease. Our results suggest that ethnolinguistic cultural groups from Africa, particularly Bantu and Khoesan, have high genetic diversity, high proportion of derived alleles at low minor allele frequency (0.0-0.1), and the highest proportion of pathogenic variants within HIV, TB, malaria, and sickle cell diseases. In contrast, ethnolinguistic cultural groups from the non-Africa continent, including Latin American, Afro-related, and European-related groups, have a high proportion of pathogenic variants within ACG than most of the ethnolinguistic cultural groups from Africa. Overall, our results show high genetic diversity in the present actionable and known disease-associated genes of four African high-burden diseases, suggesting the limitation of transferability or generalizability of ACG. This supports the use of personalized medicine as beneficial to the worldwide population as well as actionable gene list recommendation to further foster equitable global healthcare. The results point out the bias in the knowledge about the frequency distribution of these phenotypes and genetic variants associated with some diseases, especially in African and African ancestry populations.
Collapse
Affiliation(s)
- Emile R Chimusa
- Division of Human Genetics, Department of Pathology, University of Cape Town, Medical School Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Shatha Alosaimi
- Division of Human Genetics, Department of Pathology, University of Cape Town, Medical School Cape Town, Cape Town, South Africa
| | - Christian D Bope
- Division of Human Genetics, Department of Pathology, University of Cape Town, Medical School Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Department of Mathematics and Computer Science, University of Kinshasa, Kinshasa, Congo
- Centre for Bioinformatics, Department of Informatics, University of Oslo, Oslo, Norway
| |
Collapse
|
3
|
Wonkam A, Manyisa N, Bope CD, Dandara C, Chimusa ER. Whole exome sequencing reveals pathogenic variants in MYO3A, MYO15A and COL9A3 and differential frequencies in ancestral alleles in hearing impairment genes among individuals from Cameroon. Hum Mol Genet 2021; 29:3729-3743. [PMID: 33078831 PMCID: PMC7861016 DOI: 10.1093/hmg/ddaa225] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 10/01/2020] [Accepted: 10/12/2020] [Indexed: 12/30/2022] Open
Abstract
There is scarcity of known gene variants of hearing impairment (HI) in African populations. This knowledge deficit is ultimately affecting the development of genetic diagnoses. We used whole exome sequencing to investigate gene variants, pathways of interactive genes and the fractions of ancestral overderived alleles for 159 HI genes among 18 Cameroonian patients with non-syndromic HI (NSHI) and 129 ethnically matched controls. Pathogenic and likely pathogenic (PLP) variants were found in MYO3A, MYO15A and COL9A3, with a resolution rate of 50% (9/18 patients). The study identified significant genetic differentiation in novel population-specific gene variants at FOXD4L2, DHRS2L6, RPL3L and VTN between HI patients and controls. These gene variants are found in functional/co-expressed interactive networks with other known HI-associated genes and in the same pathways with VTN being a hub protein, that is, focal adhesion pathway and regulation of the actin cytoskeleton (P-values <0.05). The results suggest that these novel population-specific gene variants are possible modifiers of the HI phenotypes. We found a high proportion of ancestral allele versus derived at low HI patients-specific minor allele frequency in the range of 0.0-0.1. The results showed a relatively low pickup rate of PLP variants in known genes in this group of Cameroonian patients with NSHI. In addition, findings may signal an evolutionary enrichment of some variants of HI genes in patients, as the result of polygenic adaptation, and suggest the possibility of multigenic influence on the phenotype of congenital HI, which deserves further investigations.
Collapse
Affiliation(s)
- Ambroise Wonkam
- Division of Human Genetics, Department of Pathology, University of Cape Town, Cape Town 7925, South Africa
- Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Noluthando Manyisa
- Division of Human Genetics, Department of Pathology, University of Cape Town, Cape Town 7925, South Africa
| | - Christian D Bope
- Department of Mathematics and Department of Computer Science, Faculty of Sciences, University of Kinshasa, Kinshasa, Democratic Republic of Congo
| | - Collet Dandara
- Division of Human Genetics, Department of Pathology, University of Cape Town, Cape Town 7925, South Africa
| | - Emile R Chimusa
- Division of Human Genetics, Department of Pathology, University of Cape Town, Cape Town 7925, South Africa
| |
Collapse
|
4
|
Chimusa ER, Beighton P, Kumuthini J, Ramesar RS. Detecting genetic modifiers of spondyloepimetaphyseal dysplasia with joint laxity in the Caucasian Afrikaner community. Hum Mol Genet 2019; 28:1053-1063. [PMID: 30358852 DOI: 10.1093/hmg/ddy373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 10/16/2018] [Accepted: 10/17/2018] [Indexed: 12/31/2022] Open
Abstract
Spondyloepimetaphyseal dysplasia with joint laxity (SEMDJL) is an autosomal-recessive skeletal dysplasia. A relatively large number of patients with SEMDJL have been identified in the Caucasian Afrikaans-speaking community in South Africa. We used a combination of Genome-Wide Human Single Nucleotide Polymorphism (SNP) Array 6.0 data and whole exomic data to potentially dissect genetic modifiers associated with SEMDJL in Caucasian Afrikaans-speaking patients. Leveraging the family-based association signal in prioritizing candidate mutations, we identified two potential modifier genes, COL1A2 and MATN1, and replicating previously identified mutation in KIF22. Importantly, our findings of genetic modifier genes and previously identified mutations are layered on the same sub-network implicated in syndromes characterized by skeletal abnormalities and intellectual disability, bone and connective tissue fragility. This study has potentially provided crucial insights in identifying the indirect modifying mutation(s) linked to the true causal mutation associated with SEMDJL. It is a critical lesson that one may use constructively especially when the pace of exomic sequencing of rare disorders continues apace.
Collapse
Affiliation(s)
- Emile R Chimusa
- Division of Human Genetics, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Peter Beighton
- Division of Human Genetics, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Judit Kumuthini
- Centre for Proteomic and Genomic Research, St. Peter's Square Mall, Cape Town, South Africa
| | - Rajkumar S Ramesar
- Division of Human Genetics, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
5
|
Gu W, Gurguis CI, Zhou JJ, Zhu Y, Ko EA, Ko JH, Wang T, Zhou T. Functional and Structural Consequence of Rare Exonic Single Nucleotide Polymorphisms: One Story, Two Tales. Genome Biol Evol 2015; 7:2929-40. [PMID: 26454016 PMCID: PMC4684694 DOI: 10.1093/gbe/evv191] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2015] [Indexed: 01/01/2023] Open
Abstract
Genetic variation arising from single nucleotide polymorphisms (SNPs) is ubiquitously found among human populations. While disease-causing variants are known in some cases, identifying functional or causative variants for most human diseases remains a challenging task. Rare SNPs, rather than common ones, are thought to be more important in the pathology of most human diseases. We propose that rare SNPs should be divided into two categories dependent on whether the minor alleles are derived or ancestral. Derived alleles are less likely to have been purified by evolutionary processes and may be more likely to induce deleterious effects. We therefore hypothesized that the rare SNPs with derived minor alleles would be more important for human diseases and predicted that these variants would have larger functional or structural consequences relative to the rare variants for which the minor alleles are ancestral. We systematically investigated the consequences of the exonic SNPs on protein function, mRNA structure, and translation. We found that the functional and structural consequences are more significant for the rare exonic variants for which the minor alleles are derived. However, this pattern is reversed when the minor alleles are ancestral. Thus, the rare exonic SNPs with derived minor alleles are more likely to be deleterious. Age estimation of rare SNPs confirms that these potentially deleterious SNPs are recently evolved in the human population. These results have important implications for understanding the function of genetic variations in human exonic regions and for prioritizing functional SNPs in genome-wide association studies of human diseases.
Collapse
Affiliation(s)
- Wanjun Gu
- Research Center for Learning Sciences, Southeast University, Nanjing, Jiangsu, China
| | | | - Jin J Zhou
- Department of Epidemiology and Biostatistics, The University of Arizona
| | - Yihua Zhu
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, China College of Information Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Eun-A Ko
- Department of Pharmacology, The University of Nevada School of Medicine, Reno
| | - Jae-Hong Ko
- Department of Physiology, College of Medicine, Chung-Ang University, Seoul, South Korea
| | - Ting Wang
- Department of Medicine, The University of Arizona
| | - Tong Zhou
- Department of Medicine, The University of Arizona
| |
Collapse
|
6
|
Gorlov IP, Gorlova OY, Amos CI. Allelic Spectra of Risk SNPs Are Different for Environment/Lifestyle Dependent versus Independent Diseases. PLoS Genet 2015; 11:e1005371. [PMID: 26201053 PMCID: PMC4511800 DOI: 10.1371/journal.pgen.1005371] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 06/18/2015] [Indexed: 11/18/2022] Open
Abstract
Genome-wide association studies (GWAS) have generated sufficient data to assess the role of selection in shaping allelic diversity of disease-associated SNPs. Negative selection against disease risk variants is expected to reduce their frequencies making them overrepresented in the group of minor (<50%) alleles. Indeed, we found that the overall proportion of risk alleles was higher among alleles with frequency <50% (minor alleles) compared to that in the group of major alleles. We hypothesized that negative selection may have different effects on environment (or lifestyle)-dependent versus environment (or lifestyle)-independent diseases. We used an environment/lifestyle index (ELI) to assess influence of environmental/lifestyle factors on disease etiology. ELI was defined as the number of publications mentioning "environment" or "lifestyle" AND disease per 1,000 disease-mentioning publications. We found that the frequency distributions of the risk alleles for the diseases with strong environmental/lifestyle components follow the distribution expected under a selectively neutral model, while frequency distributions of the risk alleles for the diseases with weak environmental/lifestyle influences is shifted to the lower values indicating effects of negative selection. We hypothesized that previously selectively neutral variants become risk alleles when environment changes. The hypothesis of ancestrally neutral, currently disadvantageous risk-associated alleles predicts that the distribution of risk alleles for the environment/lifestyle dependent diseases will follow a neutral model since natural selection has not had enough time to influence allele frequencies. The results of our analysis suggest that prediction of SNP functionality based on the level of evolutionary conservation may not be useful for SNPs associated with environment/lifestyle dependent diseases.
Collapse
Affiliation(s)
- Ivan P. Gorlov
- The Geisel School of Medicine, Dartmouth College, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, United States of America
| | - Olga Y. Gorlova
- The Geisel School of Medicine, Dartmouth College, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, United States of America
| | - Christopher I. Amos
- The Geisel School of Medicine, Dartmouth College, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, United States of America
| |
Collapse
|
7
|
Peng B. Reproducible simulations of realistic samples for next-generation sequencing studies using Variant Simulation Tools. Genet Epidemiol 2015; 39:45-52. [PMID: 25395236 PMCID: PMC6432799 DOI: 10.1002/gepi.21867] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 09/14/2014] [Accepted: 09/26/2014] [Indexed: 12/31/2022]
Abstract
Computer simulations have been widely used to validate and evaluate the power of statistical methods for genetic epidemiological studies. Although a large number of simulation methods and software packages have been developed for genome-wide association studies, methodological and bioinformatics challenges have limited their applications in simulating datasets for whole-genome and whole-exome sequencing studies. With the development of more sophisticated statistical methods that make fuller use of available data and our knowledge of the human genome, there is a pressing need for genetic simulators that capture more features of empirical data (e.g., multiallele variants, indels, use of the Variant Call Format) and the human genome (e.g., functional annotations of genetic variants). This article introduces Variant Simulation Tools (VST), a module of Variant Tools for the simulation of genetic variants for sequencing-based genetic epidemiological studies. Although multiple simulation engines are provided, the core of VST is a novel forward-time simulation engine that simulates real nucleotide sequences of the human genome using DNA mutation models, fine-scale recombination maps, and a selection model based on amino acid changes of translated protein sequences. The design of VST allows users to easily create and distribute simulation methods and simulated datasets for a variety of applications and encourages fair comparison between statistical methods through the use of existing or reproduced simulated datasets.
Collapse
Affiliation(s)
- Bo Peng
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, Unit 1401, Houston, TX, 77030
| |
Collapse
|