1
|
Bukharina TA, Golubyatnikov VP, Furman DP. The central regulatory circuit in the gene network controlling the morphogenesis of Drosophila mechanoreceptors: an in silico analysis. Vavilovskii Zhurnal Genet Selektsii 2023; 27:746-754. [PMID: 38213705 PMCID: PMC10777295 DOI: 10.18699/vjgb-23-87] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 01/13/2024] Open
Abstract
Identification of the mechanisms underlying the genetic control of spatial structure formation is among the relevant tasks of developmental biology. Both experimental and theoretical approaches and methods are used for this purpose, including gene network methodology, as well as mathematical and computer modeling. Reconstruction and analysis of the gene networks that provide the formation of traits allow us to integrate the existing experimental data and to identify the key links and intra-network connections that ensure the function of networks. Mathematical and computer modeling is used to obtain the dynamic characteristics of the studied systems and to predict their state and behavior. An example of the spatial morphological structure is the Drosophila bristle pattern with a strictly defined arrangement of its components - mechanoreceptors (external sensory organs) - on the head and body. The mechanoreceptor develops from a single sensory organ parental cell (SOPC), which is isolated from the ectoderm cells of the imaginal disk. It is distinguished from its surroundings by the highest content of proneural proteins (ASC), the products of the achaete-scute proneural gene complex (AS-C). The SOPC status is determined by the gene network we previously reconstructed and the AS-C is the key component of this network. AS-C activity is controlled by its subnetwork - the central regulatory circuit (CRC) comprising seven genes: AS-C, hairy, senseless (sens), charlatan (chn), scratch (scrt), phyllopod (phyl), and extramacrochaete (emc), as well as their respective proteins. In addition, the CRC includes the accessory proteins Daughterless (DA), Groucho (GRO), Ubiquitin (UB), and Seven-in-absentia (SINA). The paper describes the results of computer modeling of different CRC operation modes. As is shown, a cell is determined as an SOPC when the ASC content increases approximately 2.5-fold relative to the level in the surrounding cells. The hierarchy of the effects of mutations in the CRC genes on the dynamics of ASC protein accumulation is clarified. AS-C as the main CRC component is the most significant. The mutations that decrease the ASC content by more than 40 % lead to the prohibition of SOPC segregation.
Collapse
Affiliation(s)
- T A Bukharina
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Novosibirsk State University, Novosibirsk, Russia
| | - V P Golubyatnikov
- Sobolev Institute of Mathematics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - D P Furman
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
2
|
He Q, Hou T, Fan X, Wang S, Wang Y, Chen S. Juvenile hormone suppresses sensory organ precursor determination to block Drosophila adult abdomen morphogenesis. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 157:103957. [PMID: 37192726 DOI: 10.1016/j.ibmb.2023.103957] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 05/05/2023] [Accepted: 05/05/2023] [Indexed: 05/18/2023]
Abstract
Juvenile hormone (JH) has a classic "status quo" action at both the pupal and adult molts when administrated exogenously. In Drosophila, treatment with JH at pupariation inhibits the formation of abdominal bristles, which are derived from the histoblasts. However, the mechanism via which JH exerts this effect remains poorly understood. In this study, we analyzed the effect of JH on histoblast proliferation, migration, and differentiation. Our results indicated that whereas the proliferation and migration of histoblasts remained unaffected following treatment with a JH mimic (JHM), their differentiation, particularly the specification of sensor organ precursor (SOP) cells, was inhibited. This effect was attributable to downregulated proneural genes achaete (ac) and Scute (sc) expression levels, which prevented the specification of SOP cells in proneural clusters. Moreover, Kr-h1 was found to mediate this effect of JHM. Histoblast-specific overexpression or knockdown of Kr-h1, respectively mimicked or attenuated the effects exerted by JHM on abdominal bristle formation, SOP determination, and transcriptional regulation of ac and sc. These results indicated that the defective SOP determination was responsible for the inhibition of abdominal bristle formation by JHM, which, in turn, was mainly mediated via the transducing action of Kr-h1.
Collapse
Affiliation(s)
- Qianyu He
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, China.
| | - Tianlan Hou
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Xiaochun Fan
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Shunxin Wang
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yanhong Wang
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Shanshan Chen
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, China
| |
Collapse
|
3
|
Xu M, Xiang Y, Liu X, Bai B, Chen R, Liu L, Li M. Long noncoding RNA SMRG regulates Drosophila macrochaetes by antagonizing scute through E(spl)mβ. RNA Biol 2018; 16:42-53. [PMID: 30526271 DOI: 10.1080/15476286.2018.1556148] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
It is obvious that the majority of cellular transcripts are long noncoding RNAs (lncRNAs). Although studies suggested that lncRNAs participate in many biological processes through diverse mechanisms, however, little is known about their effects on epidermal mechanoreceptors. Here, we identified one novel Drosophila lncRNA, Scutellar Macrochaetes Regulatory Gene (SMRG), which regulates scutellar macrochaetes that act as mechanoreceptors by antagonizing the proneural gene scute (sc), through the repressor Enhancer-of-split mβ (E(spl)mβ). SMRG deficiency induced supernumerary scutellar macrochaetes and simultaneously a high sc RNA level in the adult thorax. Genetically, sc overexpression enhanced this supernumerary phenotype, while heterozygous sc mutant rescued this phenotype, both of which were mediated by E(spl)mβ. At the molecular level, SMRG recruited E(spl)mβ to the sc promoter region, which in turn suppressed sc expression. Our work presents a novel function of lncRNA and offers insights into the molecular mechanism underlying mechanoreceptor development.
Collapse
Affiliation(s)
- Mengbo Xu
- a State Key Laboratory of Brain and Cognitive Science , Institute of Biophysics, Chinese Academy of Sciences , Beijing , China
| | - Yuanhang Xiang
- a State Key Laboratory of Brain and Cognitive Science , Institute of Biophysics, Chinese Academy of Sciences , Beijing , China.,b College of Life Sciences , University of Chinese Academy of Sciences , Beijing , China
| | - Xiaojun Liu
- c State Key Laboratory of Medical Molecular Biology , Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical College , Beijing , China
| | - Baoyan Bai
- d Key Laboratory of Noncoding RNA , Institute of Biophysics, Chinese Academy of Sciences , Beijing , China
| | - Runsheng Chen
- d Key Laboratory of Noncoding RNA , Institute of Biophysics, Chinese Academy of Sciences , Beijing , China
| | - Li Liu
- a State Key Laboratory of Brain and Cognitive Science , Institute of Biophysics, Chinese Academy of Sciences , Beijing , China.,b College of Life Sciences , University of Chinese Academy of Sciences , Beijing , China.,e Key Laboratory of Mental Health , Chinese Academy of Sciences , Beijing , China
| | - Meixia Li
- a State Key Laboratory of Brain and Cognitive Science , Institute of Biophysics, Chinese Academy of Sciences , Beijing , China.,b College of Life Sciences , University of Chinese Academy of Sciences , Beijing , China
| |
Collapse
|
4
|
Olender T, Keydar I, Pinto JM, Tatarskyy P, Alkelai A, Chien MS, Fishilevich S, Restrepo D, Matsunami H, Gilad Y, Lancet D. The human olfactory transcriptome. BMC Genomics 2016; 17:619. [PMID: 27515280 PMCID: PMC4982115 DOI: 10.1186/s12864-016-2960-3] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 07/21/2016] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Olfaction is a versatile sensory mechanism for detecting thousands of volatile odorants. Although molecular basis of odorant signaling is relatively well understood considerable gaps remain in the complete charting of all relevant gene products. To address this challenge, we applied RNAseq to four well-characterized human olfactory epithelial samples and compared the results to novel and published mouse olfactory epithelium as well as 16 human control tissues. RESULTS We identified 194 non-olfactory receptor (OR) genes that are overexpressed in human olfactory tissues vs. CONTROLS The highest overexpression is seen for lipocalins and bactericidal/permeability-increasing (BPI)-fold proteins, which in other species include secreted odorant carriers. Mouse-human discordance in orthologous lipocalin expression suggests different mammalian evolutionary paths in this family. Of the overexpressed genes 36 have documented olfactory function while for 158 there is little or no previous such functional evidence. The latter group includes GPCRs, neuropeptides, solute carriers, transcription factors and biotransformation enzymes. Many of them may be indirectly implicated in sensory function, and ~70 % are over expressed also in mouse olfactory epithelium, corroborating their olfactory role. Nearly 90 % of the intact OR repertoire, and ~60 % of the OR pseudogenes are expressed in the olfactory epithelium, with the latter showing a 3-fold lower expression. ORs transcription levels show a 1000-fold inter-paralog variation, as well as significant inter-individual differences. We assembled 160 transcripts representing 100 intact OR genes. These include 1-4 short 5' non-coding exons with considerable alternative splicing and long last exons that contain the coding region and 3' untranslated region of highly variable length. Notably, we identified 10 ORs with an intact open reading frame but with seemingly non-functional transcripts, suggesting a yet unreported OR pseudogenization mechanism. Analysis of the OR upstream regions indicated an enrichment of the homeobox family transcription factor binding sites and a consensus localization of a specific transcription factor binding site subfamily (Olf/EBF). CONCLUSIONS We provide an overview of expression levels of ORs and auxiliary genes in human olfactory epithelium. This forms a transcriptomic view of the entire OR repertoire, and reveals a large number of over-expressed uncharacterized human non-receptor genes, providing a platform for future discovery.
Collapse
Affiliation(s)
- Tsviya Olender
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.
| | - Ifat Keydar
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Jayant M Pinto
- Section of Otolaryngology-Head and Neck Surgery, University of Chicago, Chicago, IL, USA
| | - Pavlo Tatarskyy
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Anna Alkelai
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Ming-Shan Chien
- Department of Molecular Genetics and Microbiology, Department of Neurobiology, Duke Institute for Brain Sciences, Duke University Medical Center, Durham, NC, USA
| | - Simon Fishilevich
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Diego Restrepo
- Department of Cell and Developmental Biology, Neuroscience Program, and Rocky Mountain Taste and Smell Center, University of Colorado School of Medicine, Aurora, CO, USA
| | - Hiroaki Matsunami
- Department of Molecular Genetics and Microbiology, Department of Neurobiology, Duke Institute for Brain Sciences, Duke University Medical Center, Durham, NC, USA
| | - Yoav Gilad
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Doron Lancet
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
5
|
Orlov YL, Hofestädt RM, Kolchanov NA. Introductory note for BGRS\SB-2014 special issue. J Bioinform Comput Biol 2015; 13:1502001. [PMID: 25666651 DOI: 10.1142/s0219720015020011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|