1
|
Lv X, Sun Y, Tan W, Liu Y, Wen N, Fu S, Yu L, Liu T, Qi X, Shu N, Du Y, Zhang W, Meng Y. NONMMUT140591.1 may serve as a ceRNA to regulate Gata5 in UT-B knockout-induced cardiac conduction block. Open Life Sci 2021; 16:1240-1251. [PMID: 34901457 PMCID: PMC8627919 DOI: 10.1515/biol-2021-0106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/22/2021] [Accepted: 07/30/2021] [Indexed: 01/16/2023] Open
Abstract
We intended to explore the potential molecular mechanisms underlying the cardiac conduction block inducted by urea transporter (UT)-B deletion at the transcriptome level. The heart tissues were harvested from UT-B null mice and age-matched wild-type mice for lncRNA sequencing analysis. Based on the sequencing data, the differentially expressed mRNAs (DEMs) and lncRNAs (DELs) between UT-B knockout and control groups were identified, followed by function analysis and mRNA-lncRNA co-expression analysis. The miRNAs were predicted, and then the competing endogenous RNA (ceRNA) network was constructed. UT-B deletion results in the aberrant expression of 588 lncRNAs and 194 mRNAs. These DEMs were significantly enriched in the inflammation-related pathway. A lncRNA-mRNA co-expression network and a ceRNA network were constructed on the basis of the DEMs and DELs. The complement 7 (C7)-NONMMUT137216.1 co-expression pair had the highest correlation coefficient in the co-expression network. NONMMUT140591.1 had the highest degree in the ceRNA network and was involved in the ceRNA of NONMMUT140591.1-mmu-miR-298-5p-Gata5 (GATA binding protein 5). UT-B deletion may promote cardiac conduction block via inflammatory process. The ceRNA NONMMUT140591.1-mmu-miR-298-5p-Gata5 may be a potential molecular mechanism of UT-B knockout-induced cardiac conduction block.
Collapse
Affiliation(s)
- Xuejiao Lv
- Department of Respiratory Medicine and Pathophysiology, Jilin University, No. 218, Ziqiang Road, Nanguan District, Changchun, 130041 Jilin, China
| | - Yuxin Sun
- Department of Otolaryngology, Jilin University, Changchun, Jilin, 130021, China
| | - Wenxi Tan
- Department of Respiratory Medicine and Pathophysiology, Jilin University, No. 218, Ziqiang Road, Nanguan District, Changchun, 130041 Jilin, China
| | - Yang Liu
- Department of Respiratory Medicine and Pathophysiology, Jilin University, No. 218, Ziqiang Road, Nanguan District, Changchun, 130041 Jilin, China
| | - Naiyan Wen
- Department of Nursing, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China
| | - Shuang Fu
- Department of Pathology and Pathophysiology, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China
| | - Lanying Yu
- Department of Pathology and Pathophysiology, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China
| | - Tiantian Liu
- Department of Pathology and Pathophysiology, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China
| | - Xiaocui Qi
- Department of Pathology and Pathophysiology, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China
| | - Nanqi Shu
- Department of Pathology and Pathophysiology, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China
| | - Yanwei Du
- Department of Pathology and Pathophysiology, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China
| | - Wenfeng Zhang
- Department of Prescriptions, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China
| | - Yan Meng
- Department of Respiratory Medicine and Pathophysiology, Jilin University, No. 218, Ziqiang Road, Nanguan District, Changchun, 130041 Jilin, China
| |
Collapse
|
2
|
Al-Mubaid H, Ding Q, Eulenstein O. Introduction to JBCB Special Issue on BICOB-2018. J Bioinform Comput Biol 2019; 16:1802004. [PMID: 30419781 DOI: 10.1142/s0219720018020043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
3
|
Gu Y, Feng Q, Liu H, Zhou Q, Hu A, Yamaguchi T, Xia S, Kobayashi H. Bioinformatic evidences and analysis of putative biomarkers in pancreatic ductal adenocarcinoma. Heliyon 2019; 5:e02378. [PMID: 31489384 PMCID: PMC6717170 DOI: 10.1016/j.heliyon.2019.e02378] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/25/2019] [Accepted: 08/22/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal human cancers. Aberrant expression of genes plays important role in the procession of PDAC. The analysis of gene expression profile will contribute to the research of carcinoma mechanism. OBJECTIVE This present study is focused to investigate the differentially expressed genes (DEGs) from 3 PDAC microarray datasets, which would provide candidate genes for putative biomarkers to understand the mechanism of PDAC and potential targets of treatment. METHOD Based on the overlap genes obtained from 3 GEO datasets, the hub genes were identified using STRING and Cytoscape plugin MCODE. The enrichment and function analysis were applied using DAVID. The protein-protein interaction network was performed using cBioPortal and UCSC Xena. The Oncomine was finally used to determine the candidate gene by analyzing their expression between pancreas sample and PDAC sample. RESULTS 25 hub genes were selected from a total of 1006 DEGs from 3 GEO datasets, consisting of 14 upregulated genes and 11 downregulated genes. The overall decline of hub gene expression enriched in G1 phase of cell cycle in other subtypes of pancreatic cancer. Oncomine database was ultimately performed to determine the 8 candidate genes, including CXCL5, CCL20, NMU, F2R, ANXA1, EDNRA, LPAR6, and GNA15. CONCLUSIONS Conclusively, 8 candidate genes would become the potential PDAC combined biomarkers for diagnosis and therapeutic strategies.
Collapse
Affiliation(s)
- Yuan Gu
- Center for Advanced Kampo Medicine and Clinical Research, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Qijin Feng
- Center for Advanced Kampo Medicine and Clinical Research, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Han Liu
- Department of Oral Pathology, Dalian Medical University, Dalian, PR China
| | - Qi Zhou
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, PR China
| | - Ailing Hu
- Department of Palliative Medicine, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Takuji Yamaguchi
- Department of Palliative Medicine, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Shilin Xia
- Department of Palliative Medicine, Graduate School of Medicine, Juntendo University, Tokyo, Japan
- Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, PR China
| | - Hiroyuki Kobayashi
- Center for Advanced Kampo Medicine and Clinical Research, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| |
Collapse
|
4
|
Zhuo X, Zhou W, Ye H, Li D, Chang A, Wu Y, Zhou Q. Screening of key miRNAs and evaluation of their diagnostic and prognostic values in nasopharyngeal carcinoma. Oncol Lett 2019; 17:5803-5810. [PMID: 31186807 DOI: 10.3892/ol.2019.10231] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 03/01/2019] [Indexed: 01/07/2023] Open
Abstract
Increasing evidence has revealed the importance of microRNA (miRNA/miR) in cancer genesis and progression. The aim of the current study was to identify the key miRNAs involved in the onset and development of nasopharyngeal carcinoma (NPC) and to further evaluate their diagnostic and prognostic values. Microarray data were obtained and analyzed to screen differentially expressed miRNAs (DEMs) between patients with NPC and healthy controls. The target genes of the DEMs were predicted and their possible functions were evaluated. The diagnostic and prognostic values of the DEMs were subsequently investigated. A total of 4 DEMs, including miR-18a, miR-135b, miR-204 and miR-497, were identified. Gene Ontology (GO) and pathway enrichment analysis revealed that the target genes were enriched in a number of GO terms and signaling pathways. The results demonstrated that the selected DEMs may present potential diagnostic factors for NPC. In addition, miR-18a [Hazard ratio (HR), 3.405; 95% confidence interval (CI), 1.334-8.693] and miR-135b (HR, 2.482; 95% CI, 1.014-6.076) may serve prognostic roles for patients with NPC. In summary, the present study identified 4 miRNAs that may be involved in the genesis and development of NPC. In addition, miR-18a and miR-135b may present useful prognostic markers for patients with NPC. Future in vitro and in vivo investigations are warranted to substantiate the results obtained in the current study.
Collapse
Affiliation(s)
- Xianlu Zhuo
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital and Chongqing Cancer Institute and Chongqing Cancer Hospital, Chongqing 400030, P.R. China
| | - Wei Zhou
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital and Chongqing Cancer Institute and Chongqing Cancer Hospital, Chongqing 400030, P.R. China
| | - Huiping Ye
- Department of Otorhinolaryngology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Dairong Li
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital and Chongqing Cancer Institute and Chongqing Cancer Hospital, Chongqing 400030, P.R. China
| | - Aoshuang Chang
- Department of Otorhinolaryngology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Yongzhong Wu
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital and Chongqing Cancer Institute and Chongqing Cancer Hospital, Chongqing 400030, P.R. China
| | - Qi Zhou
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital and Chongqing Cancer Institute and Chongqing Cancer Hospital, Chongqing 400030, P.R. China
| |
Collapse
|