1
|
Mariammal M, Sahane N, Tiwari S. Water-soluble anionic N-confused porphyrin for sensitive and selective detection of heavy metal pollutants in aqueous environment. ANAL SCI 2023:10.1007/s44211-023-00341-5. [PMID: 37140885 DOI: 10.1007/s44211-023-00341-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 04/04/2023] [Indexed: 05/05/2023]
Abstract
Efficient detection and quantification of metal ions in real time and in a cost-effective manner is a critical step in combating the increasing danger of heavy metal contamination of our biosphere. The potential of water-soluble anionic derivative of N-confused tetraphenylporphyrin (WS-NCTPP) has been investigated for quantitative detection of heavy metal ions. The results show that the photophysical properties of WS-NCTPP differ significantly in the presence of four metal ions, namely Hg(II), Zn(II), Co(II) and Cu(II). The variation in the spectral behaviour is driven by the formation of 1:1 complexes with all the four cations with varied degree of complexation. The selectivity of the sensing is studied through interference studies, indicating maximum selectivity for Hg(II) cations. Computational studies of the structural features of the metal complexes with WS-NCTPP help in establishing the geometry and binding interactions between the metal ions and the porphyrin nucleus. The results demonstrate the promising potential of the NCTPP probe which should be utilized for detection of heavy metal ions, especially mercury, in the near future.
Collapse
Affiliation(s)
- Muthu Mariammal
- Department of Chemistry, Institute of Chemical Technology, Mumbai, Maharashtra, 400019, India
| | - Nisha Sahane
- Department of Chemistry, Institute of Chemical Technology, Mumbai, Maharashtra, 400019, India
| | - Shraeddha Tiwari
- Department of Chemistry, Institute of Chemical Technology, Mumbai, Maharashtra, 400019, India.
| |
Collapse
|
2
|
Toganoh M, Furuta H. Creation from Confusion and Fusion in the Porphyrin World─The Last Three Decades of N-Confused Porphyrinoid Chemistry. Chem Rev 2022; 122:8313-8437. [PMID: 35230807 DOI: 10.1021/acs.chemrev.1c00065] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Confusion is a novel concept of isomerism in porphyrin chemistry, delivering a steady stream of new chemistry since the discovery of N-confused porphyrin, a porphyrin mutant, in 1994. These days, the number of confused porphyrinoids is increasing, and confusion and associated fusion are found in various fields such as supramolecular chemistry, materials chemistry, biological chemistry, and catalysts. In this review, the birth and growth of confused porphyrinoids in the last three decades are described.
Collapse
Affiliation(s)
- Motoki Toganoh
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Hiroyuki Furuta
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
3
|
Ishizuka T, Sakashita R, Iwanaga O, Morimoto T, Mori S, Ishida M, Toganoh M, Takegoshi K, Osuka A, Furuta H. NH Tautomerism of N-Confused Porphyrin: Solvent/Substituent Effects and Isomerization Mechanism. J Phys Chem A 2020; 124:5756-5769. [PMID: 32559101 DOI: 10.1021/acs.jpca.0c04779] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The effects of substituents and solvents on the NH tautomerism of N-confused porphyrin (2) were investigated. The structures, electronic states, and aromaticity of NH tautomers (2-2H and 2-3H) were studied by absorption and nuclear magnetic resonance (1H, 13C, and 15N) spectroscopies, single-crystal X-ray diffraction analysis, and theoretical calculations. The relative stability of the tautomers is highly affected by solvents, with the 3H-type tautomer being more stable in nonpolar solvents, while the 2H-type tautomer being highly stabilized in polar solvents with high donor numbers such as N,N-dimethylformamide (DMF), pyridine, and acetone. Electron-withdrawing groups on the meso-aryl substituents as well as the methyl group at the ortho position also stabilize the 2H-type tautomer. Kinetically, the tautomerism rate is significantly influenced by solvent and concentration, and a particularly large activation entropy (ΔS⧧) is obtained in pyridine. The first-order deuterium isotope effect on the reaction rates of NH tautomerism (kH/kD) is determined to be 2.4 at 298 K. On the basis of kinetic data, the mechanism of isomerization is identified as an intramolecular process, including the rotation of the confused pyrrole in pyridine/chloroform and DMF/chloroform mixed solvent systems, and as a pyridine-mediated process in pyridine alone.
Collapse
Affiliation(s)
- Tomoya Ishizuka
- Department of Chemistry and Biochemistry, Graduate School of Engineering and Center for Molecular Systems, Kyushu University, Fukuoka 819-0395, Japan.,Department of Chemistry, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8571, Japan.,Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Ryuichi Sakashita
- Department of Chemistry and Biochemistry, Graduate School of Engineering and Center for Molecular Systems, Kyushu University, Fukuoka 819-0395, Japan
| | - Osamu Iwanaga
- Department of Chemistry and Biochemistry, Graduate School of Engineering and Center for Molecular Systems, Kyushu University, Fukuoka 819-0395, Japan
| | - Tatsuki Morimoto
- Department of Chemistry and Biochemistry, Graduate School of Engineering and Center for Molecular Systems, Kyushu University, Fukuoka 819-0395, Japan.,Department of Applied Chemistry, School of Engineering, Tokyo University of Technology, Hachioji 192-0982, Japan
| | - Shigeki Mori
- Advanced Research Support Center, Ehime University, Matsuyama 790-8577, Japan
| | - Masatoshi Ishida
- Department of Chemistry and Biochemistry, Graduate School of Engineering and Center for Molecular Systems, Kyushu University, Fukuoka 819-0395, Japan
| | - Motoki Toganoh
- Department of Chemistry and Biochemistry, Graduate School of Engineering and Center for Molecular Systems, Kyushu University, Fukuoka 819-0395, Japan
| | - Kiyonori Takegoshi
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Atsuhiro Osuka
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Hiroyuki Furuta
- Department of Chemistry and Biochemistry, Graduate School of Engineering and Center for Molecular Systems, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
4
|
Liu B, Li X, Zhang J, Chmielewski PJ. L-Proline catalyzed reaction of N-confused porphyrin and active methylene compounds. Org Biomol Chem 2014; 11:4831-9. [PMID: 23797270 DOI: 10.1039/c3ob40754c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Active methylene compounds such as acetone, butanone, cyclopentanone, nitromethane, malononitrile, ethyl 2-cyanoacetate, diethyl malonate, and ethyl acetylacetate react with the C3 position of N-confused porphyrin in the presence of L-proline in refluxing THF-EtOH affording a variety of N-confused porphyrin derivatives in moderate yield. L-Proline catalyzes the reaction facilitating the formation of the carbanion derived from an active methylene compound simultaneously delivering protons to the N-confused porphyrin. Both processes are key factors of this reaction.
Collapse
Affiliation(s)
- Bin Liu
- Key Laboratory of Theoretical Chemistry and Molecular Simulation of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
| | | | | | | |
Collapse
|
7
|
Thomas AP, Sreedevi KCG, Adinarayana B, Ramakrishnan S, Srinivasan A. meso-Tetrakis(3,5-dihydroxyphenyl)N-confused porphyrin: influence of polar protic and aprotic solvents in tautomeric existence, exchange and morphology. RSC Adv 2013. [DOI: 10.1039/c3ra42289e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
9
|
Li X, Liu B, Yi P, Yi R, Yu X, Chmielewski PJ. Synthesis of N-Confused Porphyrin Derivatives with a Substituted 3-C Position. J Org Chem 2011; 76:2345-9. [DOI: 10.1021/jo200040x] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Xiaofang Li
- Key Laboratory of Theoretical Chemistry and Molecular Simulation of Ministry of Education, Hunan Province College Key Laboratory of QSAR/QSPR, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
| | - Bin Liu
- Key Laboratory of Theoretical Chemistry and Molecular Simulation of Ministry of Education, Hunan Province College Key Laboratory of QSAR/QSPR, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
| | - Pinggui Yi
- Key Laboratory of Theoretical Chemistry and Molecular Simulation of Ministry of Education, Hunan Province College Key Laboratory of QSAR/QSPR, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
| | - Rongqiong Yi
- Key Laboratory of Theoretical Chemistry and Molecular Simulation of Ministry of Education, Hunan Province College Key Laboratory of QSAR/QSPR, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
| | - Xianyong Yu
- Key Laboratory of Theoretical Chemistry and Molecular Simulation of Ministry of Education, Hunan Province College Key Laboratory of QSAR/QSPR, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
| | - Piotr J. Chmielewski
- Department of Chemistry, University of Wrocław, 14 F. Joliot-Curie Street, 50 383 Wrocław, Poland
| |
Collapse
|
10
|
Affiliation(s)
- Otto S. Wolfbeis
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, D-93040 Regensburg, Germany
| |
Collapse
|