1
|
Jin ZY, Fatima H, Zhang Y, Shao Z, Chen XJ. Recent Advances in Bio‐Compatible Oxygen Singlet Generation and Its Tumor Treatment. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202100176] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Zheng Yang Jin
- The First Affiliated Hospital of Wenzhou Medical University Wenzhou Zhejiang 325015 P. R. China
| | - Hira Fatima
- Western Australia School of Mines: Minerals Energy and Chemical Engineering (WASM‐MECE) Curtin University Perth Western Australia 6102 Australia
| | - Yue Zhang
- The First Affiliated Hospital of Wenzhou Medical University Wenzhou Zhejiang 325015 P. R. China
| | - Zongping Shao
- Western Australia School of Mines: Minerals Energy and Chemical Engineering (WASM‐MECE) Curtin University Perth Western Australia 6102 Australia
- State Key Laboratory of Materials‐Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University Nanjing Jiangsu 211816 P. R. China
| | - Xiang Jian Chen
- The First Affiliated Hospital of Wenzhou Medical University Wenzhou Zhejiang 325015 P. R. China
| |
Collapse
|
2
|
Feuser PE, Possato JC, Scussel R, Cercena R, de Araújo PHH, Machado-de-Ávila RA, Dal Bó AG. In vitro phototoxicity of zinc phthalocyanine (ZnPc) loaded in liposomes against human breast cancer cells. J PORPHYR PHTHALOCYA 2020. [DOI: 10.1142/s1088424621500073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In this study, zinc phthalocyanine (ZnPc) was encapsulated in liposomes (Phosphatidylcholine (PC) from soybean lecithin (95% phosphatidylcholine, 5% lysophosphatidylcholine), and phosphatidic acid) obtained by a reverse-phase evaporation method. Liposomes were characterized and cytotoxicity and phototoxicity assays were performed using mouse embryo fibroblast (NIH3T3) and human breast cancer (MDAMB231), respectively. ZnPc was successfully encapsulated in liposomes ([Formula: see text]80%), presenting single populations with sizes of [Formula: see text]300 nm and negative zeta potential (-35 to -40 mV). The release profile at different pH presented a biphasic release controlled by the Fickian diffusion mechanism. The cytotoxicity assays carried out on NIH3T3 cells showed that the liposomes provided good protection for ZnPc, and did not affect the viability of non-cancerous cells. In contrast, free ZnPc significantly reduced non-cancerous cell viability at higher concentrations. ZnPc loaded in liposomes ensured a higher phototoxic effect on the MDAMB231 cells at all concentrations tested when exposed to low light dose.
Collapse
Affiliation(s)
- Paulo Emilio Feuser
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
- Postgraduate Program in Health Science, University of the Extreme South Santa Catarina, Criciuma, Santa Catarina, Brazil
| | - Jonathann Corrêa Possato
- Postgraduate Program in Health Science, University of the Extreme South Santa Catarina, Criciuma, Santa Catarina, Brazil
| | - Rahisa Scussel
- Postgraduate Program in Health Science, University of the Extreme South Santa Catarina, Criciuma, Santa Catarina, Brazil
| | - Rodrigo Cercena
- Postgraduate Program in Materials Science and Engineering, University of the Extreme South Santa Catarina, Criciuma, Santa Catarina, Brazil
| | - Pedro Henrique Hermes de Araújo
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | | | - Alexandre Gonçalves Dal Bó
- Postgraduate Program in Materials Science and Engineering, University of the Extreme South Santa Catarina, Criciuma, Santa Catarina, Brazil
| |
Collapse
|
3
|
Casadó A, Sagristá ML, Mora M. Formulation and In Vitro Characterization of Thermosensitive Liposomes for the Delivery of Irinotecan. J Pharm Sci 2014; 103:3127-38. [DOI: 10.1002/jps.24097] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 06/06/2014] [Accepted: 07/03/2014] [Indexed: 01/09/2023]
|