1
|
Mass OA, Watt DR, Patten LK, Pensack RD, Lee J, Turner DB, Yurke B, Knowlton WB. Exciton delocalization in a fully synthetic DNA-templated bacteriochlorin dimer. Phys Chem Chem Phys 2023; 25:28437-28451. [PMID: 37843877 PMCID: PMC10599410 DOI: 10.1039/d3cp01634j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 08/23/2023] [Indexed: 10/17/2023]
Abstract
A bacteriochlorophyll a (Bchla) dimer is a basic functional unit in the LH1 and LH2 photosynthetic pigment-protein antenna complexes of purple bacteria, where an ordered, close arrangement of Bchla pigments-secured by noncovalent bonding to a protein template-enables exciton delocalization at room temperature. Stable and tunable synthetic analogs of this key photosynthetic subunit could lead to facile engineering of exciton-based systems such as in artificial photosynthesis, organic optoelectronics, and molecular quantum computing. Here, using a combination of synthesis and theory, we demonstrate that exciton delocalization can be achieved in a dimer of a synthetic bacteriochlorin (BC) featuring stability, high structural modularity, and spectral properties advantageous for exciton-based devices. The BC dimer was covalently templated by DNA, a stable and highly programmable scaffold. To achieve exciton delocalization in the absence of pigment-protein interactions critical for the Bchla dimer, we relied on the strong transition dipole moment in BC enabled by two auxochromes along the Qy transition, and omitting the central metal and isocyclic ring. The spectral properties of the synthetic "free" BC closely resembled those of Bchla in an organic solvent. Applying spectroscopic modeling, the exciton delocalization in the DNA-templated BC dimer was evaluated by extracting the excitonic hopping parameter, J to be 214 cm-1 (26.6 meV). For comparison, the same method applied to the natural protein-templated Bchla dimer yielded J of 286 cm-1 (35.5 meV). The smaller value of J in the BC dimer likely arose from the partial bacteriochlorin intercalation and the difference in medium effect between DNA and protein.
Collapse
Affiliation(s)
- Olga A Mass
- Micron School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, USA.
| | - Devan R Watt
- Micron School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, USA.
| | - Lance K Patten
- Micron School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, USA.
| | - Ryan D Pensack
- Micron School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, USA.
| | - Jeunghoon Lee
- Micron School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, USA.
- Department of Chemistry and Biochemistry, Boise State University, Boise, Idaho 83725, USA
| | - Daniel B Turner
- Micron School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, USA.
| | - Bernard Yurke
- Micron School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, USA.
- Department of Electrical & Computer Engineering, Boise State University, Boise, Idaho 83725, USA
| | - William B Knowlton
- Micron School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, USA.
- Department of Electrical & Computer Engineering, Boise State University, Boise, Idaho 83725, USA
| |
Collapse
|
2
|
Ansteatt S, Gelfand R, Pelton M, Ptaszek M. Geometry-Independent Ultrafast Energy Transfer in Bioinspired Arrays Containing Electronically Coupled BODIPY Dimers as Energy Donors. Chemistry 2023; 29:e202301571. [PMID: 37494565 DOI: 10.1002/chem.202301571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 07/28/2023]
Abstract
In photosynthetic light-harvesting complexes, strong interaction between chromophores enables efficient absorption of solar radiation and has been suggested to enable ultrafast energy funneling to the reaction center. To examine whether similar effects can be realized in synthetic systems, and to determine the mechanisms of energy transfer, we synthesized and characterized a series of bioinspired arrays containing strongly-coupled BODIPY dimers as energy donors and chlorin derivatives as energy acceptors. The BODIPY dimers feature broad absorption in the range of 500-600 nm, complementing the chlorin absorption to provide absorption across the entire visible spectrum. Ultrafast (~10 ps) energy transfer was observed from photoexcited BODIPY dyads to chlorin subunits. Surprisingly, the energy-transfer rate is nearly independent of the position where the BODIPY dimer is attached to the chlorin and of the type of connecting linker. In addition, the energy-transfer rate from BODIPY dimers to chlorin is slower than the corresponding rate in arrays containing BODIPY monomers. The lower rate, corresponding to less efficient through-bond transfer, is most likely due to weaker electronic coupling between the ground state of the chlorin acceptor and the delocalized electronic state of the BODIPY dimer, compared to the localized state of a BODIPY monomer.
Collapse
Affiliation(s)
- Sara Ansteatt
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County (UMBC), 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - Rachel Gelfand
- Department of Physics, University of Maryland, Baltimore County (UMBC), 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - Matthew Pelton
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County (UMBC), 1000 Hilltop Circle, Baltimore, MD 21250, USA
- Department of Physics, University of Maryland, Baltimore County (UMBC), 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - Marcin Ptaszek
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County (UMBC), 1000 Hilltop Circle, Baltimore, MD 21250, USA
| |
Collapse
|
3
|
Sample HC, Twamley B, Senge MO. Structure of ( R, R)-4-bromo-2-{4-[4-bromo-1-(4-toluene-sulfon-yl)-1 H-pyrrol-2-yl]-1,3-di-nitro-butan-2-yl}-1-(4-toluene-sulfon-yl)-1 H-pyrrole, another ostensible by-product in the synthesis of geminal-dimethyl hydro-dipyrrins. Acta Crystallogr E Crystallogr Commun 2023; 79:592-595. [PMID: 37601579 PMCID: PMC10439434 DOI: 10.1107/s2056989023004644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 05/25/2023] [Indexed: 08/22/2023]
Abstract
The crystal structure of (R,R)-4-bromo-2-{4-[4-bromo-1-(4-toluene-sulfon-yl)-1H-pyrrol-2-yl]-1,3-di-nitro-butan-2-yl}-1-(4-toluene-sulfon-yl)-1H-pyrrole (1, C26H24Br2N4O8S2) is presented. The title compound was isolated in suitable yield as a by-product in our synthesis of geminal-dimethyl hydro-dipyrrins. We observe an unforeseen enanti-omeric resolution both in the bulk sample and the crystal of 1, with distinct C-H⋯O (Cmeth-yl-H⋯Onitro, Csp 3-H⋯Osulfon-yl) inter-actions observed in the enanti-omers present, along with other inter-actions, namely C5-pyrrol-yl-H⋯Osulfon-yl, forming a polymer along the crystallographic c-axis direction. Whilst pyrrolic fragments are well documented in the literature, little data is found surrounding the 1,3-di-nitro-butane scaffold.
Collapse
Affiliation(s)
- Harry C. Sample
- School of Chemistry, Chair of Organic Chemistry, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St., D02 R590, Dublin, Ireland
| | - Brendan Twamley
- School of Chemistry, Trinity College Dublin, College Green, Dublin 2, Ireland
| | - Mathias O. Senge
- School of Chemistry, Chair of Organic Chemistry, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse St., D02 R590, Dublin, Ireland
| |
Collapse
|
4
|
Ghobadi E, Saednia S, Emami S. Synthetic approaches and structural diversity of triazolylbutanols derived from voriconazole in the antifungal drug development. Eur J Med Chem 2022; 231:114161. [DOI: 10.1016/j.ejmech.2022.114161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 12/24/2022]
|
5
|
Jing H, Wang P, Chen B, Jiang J, Vairaprakash P, Liu S, Rong J, Chen CY, Nalaoh P, Lindsey JS. Synthesis of bacteriochlorins bearing diverse β-substituents. NEW J CHEM 2022. [DOI: 10.1039/d1nj05852e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Eleven bacteriochlorins have been prepared for surface attachment, bioconjugation, water-solubilization, vibrational studies, and elaboration into multichromophore arrays.
Collapse
Affiliation(s)
- Haoyu Jing
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, USA
| | - Pengzhi Wang
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, USA
| | - Boyang Chen
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, USA
| | - Jianbing Jiang
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, USA
| | - Pothiappan Vairaprakash
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, USA
| | - Sijia Liu
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, USA
| | - Jie Rong
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, USA
| | - Chih-Yuan Chen
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, USA
| | - Phattananawee Nalaoh
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Wangchan, Rayong, 21210, Thailand
| | - Jonathan S. Lindsey
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, USA
| |
Collapse
|
6
|
Palmieri A, Petrini M. Synthesis and practical applications of 2-(2-nitroalkyl)pyrroles. Org Biomol Chem 2021; 18:4533-4546. [PMID: 32510092 DOI: 10.1039/d0ob00956c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Functionalization of pyrroles introducing a 2-nitroalkyl moiety allows the formation of nitro-containing compounds to be used as pivotal intermediates for the synthesis of bioactive compounds. The reaction of pyrroles with nitroalkenes under the Friedel-Crafts conditions allows a direct entry to 2-(2-nitroalkyl)pyrroles. This approach can also be used for the preparation of enantioenriched derivatives exploiting asymmetric catalysis. In a complementary fashion, the Henry reaction between 2-formylpyrroles and nitroalkanes generates the corresponding nitroaldol products which upon dehydration and reduction of the intermediate 2-pyrrolylnitroethene efficiently afford 2-(2-nitroalkyl)pyrroles. This review article summarizes the most relevant procedures for the preparation of 2-(2-nitroalkyl)pyrroles during the last two decades as well as their significant practical applications.
Collapse
Affiliation(s)
- Alessandro Palmieri
- School of Science and Technology, Chemistry Division, University of Camerino, Via S. Agostino n. 1, 62032 Camerino (MC), Italy.
| | - Marino Petrini
- School of Science and Technology, Chemistry Division, University of Camerino, Via S. Agostino n. 1, 62032 Camerino (MC), Italy.
| |
Collapse
|
7
|
Kingsbury CJ, Sample HC, Senge MO. Crystal structures of 4-bromo-2-formyl-1-tosyl-1 H-pyrrole, ( E)-4-bromo-2-(2-nitro-vin-yl)-1-tosyl-1 H-pyrrole and 6-(4-bromo-1-tosyl-pyrrol-2-yl)-4,4-dimethyl-5-nitro-hexan-2-one. Acta Crystallogr E Crystallogr Commun 2021; 77:341-345. [PMID: 33936754 PMCID: PMC8025855 DOI: 10.1107/s2056989021002280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 02/26/2021] [Indexed: 11/30/2022]
Abstract
The crystal structures of three inter-mediate compounds in the synthesis of 8-bromo-2,3,4,5-tetra-hydro-1,3,3-tri-methyl-dipyrrin are reported; 4-bromo-2-formyl-1-tosyl-1H-pyrrole, C12H10BrNO3S, (E)-4-bromo-2-(2-nitro-vin-yl)-1-tosyl-1H-pyrrole, C13H11BrN2O4S, and 6-(4-bromo-1-tosyl-pyrrol-2-yl)-4,4-dimethyl-5-nitro-hexan-2-one, C19H23BrN2O5S. The compounds show multitudinous inter-molecular C-H⋯O inter-actions, with bond distances and angle consistent in the series and within expectations, as well as varied packing types. The merits of collecting data beyond the standard resolution usually reported for small mol-ecules are discussed.
Collapse
Affiliation(s)
- Christopher J. Kingsbury
- Chair of Organic Chemistry, School of Chemistry, Trinity Biomedical Science Institute, 152-160 Pearse Street, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
| | - Harry C. Sample
- Chair of Organic Chemistry, School of Chemistry, Trinity Biomedical Science Institute, 152-160 Pearse Street, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
| | - Mathias O. Senge
- Chair of Organic Chemistry, School of Chemistry, Trinity Biomedical Science Institute, 152-160 Pearse Street, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
| |
Collapse
|
8
|
Wang P, Lindsey JS. Riley Oxidation of Heterocyclic Intermediates on Paths to Hydroporphyrins-A Review. Molecules 2020; 25:molecules25081858. [PMID: 32316663 PMCID: PMC7221620 DOI: 10.3390/molecules25081858] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 04/14/2020] [Accepted: 04/16/2020] [Indexed: 02/07/2023] Open
Abstract
Riley oxidation of advanced heterocyclic intermediates (dihydrodipyrrins and tetrahydrodipyrrins) is pivotal in routes to synthetic hydroporphyrins including chlorins, bacteriochlorins, and model (bacterio)chlorophylls. Such macrocycles find wide use in studies ranging from energy sciences to photomedicine. The key transformation (–CH3 → –CHO) is often inefficient, however, thereby crimping the synthesis of hydroporphyrins. The first part of the review summarizes 12 representative conditions for Riley oxidation across diverse (non-hydrodipyrrin) substrates. An interlude summarizes the proposed mechanisms and provides context concerning the nature of various selenium species other than SeO2. The second part of the review comprehensively reports the conditions and results upon Riley oxidation of 45 1-methyltetrahydrodipyrrins and 1-methyldihydrodipyrrins. A comparison of the results provides insights into the tolerable structural features for Riley oxidation of hydrodipyrrins. In general, Riley oxidation of dihydrodipyrrins has a broad scope toward substituents, but proceeds in only modest yield. Too few tetrahydrodipyrrins have been examined to draw conclusions concerning scope. New reaction conditions or approaches will be required to achieve high yields for this critical transformation in the synthesis of hydroporphyrins.
Collapse
|
9
|
Ballatore MB, Milanesio ME, Fujita H, Lindsey JS, Durantini EN. Bacteriochlorin-bis(spermine) conjugate affords an effective photodynamic action to eradicate microorganisms. JOURNAL OF BIOPHOTONICS 2020; 13:e201960061. [PMID: 31602791 DOI: 10.1002/jbio.201960061] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/07/2019] [Accepted: 09/23/2019] [Indexed: 06/10/2023]
Abstract
A novel bacteriochlorin bearing two spermine units (BCS) was synthesized from 3,13-dibromo-8,8,18,18-tetramethylbacteriochlorin (BC-Br 3,13 ). The synthesis involved the Suzuki coupling of BC-Br 3,13 to obtain a bacteriochlorin-dibenzaldehyde (BCA), which was subjected to reductive amination with spermine. The resulting bacteriochlorin BCS presents a strong near-infrared absorption band at 747 nm, emits at 750 nm with fluorescence quantum yield of 0.14, and generates singlet molecular oxygen, O2 (1 Δg ), with a quantum yield of 0.27. Photokilling capacities mediated by BCS were evaluated in microbial cells. The viability of Staphylococcus aureus decreased 7 logs when cells were incubated with 1 μM BCS and irradiated for 15 minutes. Comparable photocytotoxic effect was obtained with Escherichia coli, when cells were treated for 30 minutes with visible light. BCS was also an effective photosensitizer to inactivate Candida albicans. In addition, this bacteriochlorin was able to eradicate bacteria at short incubation times. The structure of BCS contains eight basic amino groups that, when protonated in water, increase the binding to the cell envelope. In summary, the readily accessible bacteriochlorin BCS was highly effective at low concentrations as a broad-spectrum antimicrobial photosensitizer.
Collapse
Affiliation(s)
- María B Ballatore
- IDAS-CONICET, Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Córdoba, Argentina
| | - María E Milanesio
- IDAS-CONICET, Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Córdoba, Argentina
| | - Hikaru Fujita
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina
| | - Jonathan S Lindsey
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina
| | - Edgardo N Durantini
- IDAS-CONICET, Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Córdoba, Argentina
| |
Collapse
|
10
|
Montoir D, Guillon R, Gazzola S, Ourliac-Garnier I, Soklou KE, Tonnerre A, Picot C, Planchat A, Pagniez F, Le Pape P, Logé C. New azole antifungals with a fused triazinone scaffold. Eur J Med Chem 2020; 189:112082. [PMID: 32000050 DOI: 10.1016/j.ejmech.2020.112082] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/17/2020] [Accepted: 01/17/2020] [Indexed: 01/25/2023]
Abstract
We identified a new series of azole antifungal agents bearing a pyrrolotriazinone scaffold. These compounds exhibited a broad in vitro antifungal activity against pathogenic Candida spp. (fluconazole-susceptible and fluconazole-resistant) and were 10- to 100-fold more active than voriconazole against two Candida albicans isolates with known mechanisms of azole resistance (overexpression of efflux pumps and/or specific point substitutions in the Erg11p/CYP51 enzyme). Our lead compound 12 also displayed promising in vitro antifungal activity against some filamentous fungi such as Aspergillus fumigatus and the zygomycetes Rhizopus oryzae and Mucor circinelloides and an in vivo efficiency against two murine models of lethal systemic infections caused by Candida albicans.
Collapse
Affiliation(s)
- David Montoir
- Université de Nantes, Nantes Atlantique Universités, Département de Chimie Thérapeutique, Cibles et Médicaments des Infections et du Cancer, IICIMED- EA1155, Institut de Recherche en Santé 2, F-44200, Nantes, France
| | - Rémi Guillon
- Université de Nantes, Nantes Atlantique Universités, Département de Chimie Thérapeutique, Cibles et Médicaments des Infections et du Cancer, IICIMED- EA1155, Institut de Recherche en Santé 2, F-44200, Nantes, France
| | - Sophie Gazzola
- Université de Nantes, Nantes Atlantique Universités, Département de Parasitologie et Mycologie Médicale, Cibles et Médicaments des Infections et du Cancer, IICIMED- EA1155, Institut de Recherche en Santé 2, F-44200, Nantes, France
| | - Isabelle Ourliac-Garnier
- Université de Nantes, Nantes Atlantique Universités, Département de Parasitologie et Mycologie Médicale, Cibles et Médicaments des Infections et du Cancer, IICIMED- EA1155, Institut de Recherche en Santé 2, F-44200, Nantes, France
| | - Kossi Efouako Soklou
- Université de Nantes, Nantes Atlantique Universités, Département de Chimie Thérapeutique, Cibles et Médicaments des Infections et du Cancer, IICIMED- EA1155, Institut de Recherche en Santé 2, F-44200, Nantes, France
| | - Alain Tonnerre
- Université de Nantes, Nantes Atlantique Universités, Département de Chimie Thérapeutique, Cibles et Médicaments des Infections et du Cancer, IICIMED- EA1155, Institut de Recherche en Santé 2, F-44200, Nantes, France
| | - Carine Picot
- Université de Nantes, Nantes Atlantique Universités, Département de Parasitologie et Mycologie Médicale, Cibles et Médicaments des Infections et du Cancer, IICIMED- EA1155, Institut de Recherche en Santé 2, F-44200, Nantes, France
| | - Aurélien Planchat
- Université de Nantes, Nantes Atlantique Universités, CEISAM, Chimie et Interdisciplinarité, Synthèse, Analyse, Modélisation, UMR CNRS 6230, Faculté des Sciences et Techniques, F-44322, Nantes, France
| | - Fabrice Pagniez
- Université de Nantes, Nantes Atlantique Universités, Département de Parasitologie et Mycologie Médicale, Cibles et Médicaments des Infections et du Cancer, IICIMED- EA1155, Institut de Recherche en Santé 2, F-44200, Nantes, France
| | - Patrice Le Pape
- Université de Nantes, Nantes Atlantique Universités, Département de Parasitologie et Mycologie Médicale, Cibles et Médicaments des Infections et du Cancer, IICIMED- EA1155, Institut de Recherche en Santé 2, F-44200, Nantes, France
| | - Cédric Logé
- Université de Nantes, Nantes Atlantique Universités, Département de Chimie Thérapeutique, Cibles et Médicaments des Infections et du Cancer, IICIMED- EA1155, Institut de Recherche en Santé 2, F-44200, Nantes, France.
| |
Collapse
|
11
|
Wang P, Lu F, Lindsey JS. Use of the Nascent Isocyclic Ring to Anchor Assembly of the Full Skeleton of Model Chlorophylls. J Org Chem 2019; 85:702-715. [PMID: 31880444 DOI: 10.1021/acs.joc.9b02770] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The chlorophyll skeleton contains a chlorin macrocycle and an annulated fifth (or isocyclic) ring bearing 131-oxo and 132-carbomethoxy substituents. The isocyclic ring has traditionally been constructed by annulation of an intact tetrapyrrole macrocycle. Here, a complementary route employs reaction of a gem-dimethyl-substituted dihydrodipyrrin-carboxaldehyde (AD half) and a dipyrromethane bearing a 3-methoxy-1,3-dioxopropyl group (BC half). A McMurry-like reaction of a 2-(2-nitro-5-oxohexyl)pyrrole was employed to construct the second pyrrole ring in one of three BC halves, whereas the other two were prepared by known routes. An AD half and a BC half were joined by Knoevenagel condensation at room temperature, affording the AD,BC-substituted 2-methoxycarbonyl-2-propenone. The subsequent reaction of three AD, BC-propenones (mixture of Z,E-isomers) in CH3CN containing InCl3 and In(OTf)3 at 80 °C afforded the chlorophyll skeleton as the chloroindium(III) chelate; the reaction proceeds via Nazarov cyclization (to form the isocyclic ring), SEAr (to construct the macrocycle), and 2e-,2H+ oxidation (to give the aromatic chromophore). The absorption spectra of the complexes closely resemble that of chlorophyll a. The present work exploits the nascent isocyclic ring as an anchor for directed assembly of the AD and BC halves, forming both the chlorin macrocycle and the isocyclic ring in a single-flask transformation.
Collapse
Affiliation(s)
- Pengzhi Wang
- Department of Chemistry , North Carolina State University , Raleigh , North Carolina 27695-8204 , United States
| | - Futai Lu
- Department of Chemistry , North Carolina State University , Raleigh , North Carolina 27695-8204 , United States
| | - Jonathan S Lindsey
- Department of Chemistry , North Carolina State University , Raleigh , North Carolina 27695-8204 , United States
| |
Collapse
|
12
|
Fujita H, Jing H, Krayer M, Allu S, Veeraraghavaiah G, Wu Z, Jiang J, Diers JR, Magdaong NCM, Mandal AK, Roy A, Niedzwiedzki DM, Kirmaier C, Bocian DF, Holten D, Lindsey JS. Annulated bacteriochlorins for near-infrared photophysical studies. NEW J CHEM 2019. [DOI: 10.1039/c9nj01113g] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Bacteriochlorins with phenaleno or benzo annulation absorb at 913 or 1033 nm and exhibit excited-state lifetimes of 150 or 7 ps, suggesting applications in photoacoustic imaging.
Collapse
Affiliation(s)
- Hikaru Fujita
- Department of Chemistry
- North Carolina State University
- Raleigh
- USA
| | - Haoyu Jing
- Department of Chemistry
- North Carolina State University
- Raleigh
- USA
| | - Michael Krayer
- Department of Chemistry
- North Carolina State University
- Raleigh
- USA
| | | | | | - Zhiyuan Wu
- Department of Chemistry
- North Carolina State University
- Raleigh
- USA
| | - Jianbing Jiang
- Department of Chemistry
- North Carolina State University
- Raleigh
- USA
| | - James R. Diers
- Department of Chemistry
- University of California
- Riverside
- USA
| | | | - Amit K. Mandal
- Department of Chemistry
- Washington University
- St. Louis
- USA
| | - Arpita Roy
- Department of Chemistry
- Washington University
- St. Louis
- USA
| | - Dariusz M. Niedzwiedzki
- Department of Energy
- Environmental & Chemical Engineering and Center for Solar Energy and Energy Storage
- Washington University
- St. Louis
- USA
| | | | | | - Dewey Holten
- Department of Chemistry
- Washington University
- St. Louis
- USA
| | | |
Collapse
|
13
|
Melanson JA, Figliola C, Smithen DA, Kajetanowicz AK, Thompson A. Probing the hydrolytic reactivity of 2-difluoromethyl pyrroles. Org Biomol Chem 2018; 15:144-152. [PMID: 27841887 DOI: 10.1039/c6ob01441k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
α-Difluoromethyl pyrroles were found to be stable while N-protected with an electron-withdrawing group. Due to the propensity of pyrroles to access azafulvenium-like intermediates, the C-F bonds of an α-difluoromethyl substituent are labile under hydrolytic conditions. The presence of certain electron-withdrawing substituents about the pyrrolic ring can accelerate this process, as determined through a kinetic comparison of the deprotection and subsequent hydrolysis reactions of N-protected β-aryl α-difluoromethyl pyrroles.
Collapse
Affiliation(s)
- Jennifer A Melanson
- Department of Chemistry, Dalhousie University, P.O. Box 15000, Halifax, NS B3H 4R2, Canada.
| | - Carlotta Figliola
- Department of Chemistry, Dalhousie University, P.O. Box 15000, Halifax, NS B3H 4R2, Canada.
| | - Deborah A Smithen
- Department of Chemistry, Dalhousie University, P.O. Box 15000, Halifax, NS B3H 4R2, Canada.
| | | | - Alison Thompson
- Department of Chemistry, Dalhousie University, P.O. Box 15000, Halifax, NS B3H 4R2, Canada.
| |
Collapse
|
14
|
Reddy MN, Zhang S, Kim HJ, Mass O, Taniguchi M, Lindsey JS. Synthesis and Spectral Properties of meso-Arylbacteriochlorins, Including Insights into Essential Motifs of their Hydrodipyrrin Precursors. Molecules 2017; 22:molecules22040634. [PMID: 28420113 PMCID: PMC6154299 DOI: 10.3390/molecules22040634] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 04/08/2017] [Accepted: 04/11/2017] [Indexed: 11/16/2022] Open
Abstract
Synthetic bacteriochlorins-analogues of bacteriochlorophylls, Nature's near-infrared absorbers-are attractive for diverse photochemical studies. meso-Arylbacteriochlorins have been prepared by the self-condensation of a dihydrodipyrrin-carbinol or dihydrodipyrrin-acetal following an Eastern-Western (E-W) or Northern-Southern (N-S) joining process. The bacteriochlorins bear a gem-dimethyl group in each pyrroline ring to ensure stability toward oxidation. The two routes differ in the location of the gem-dimethyl group at the respective 3- or 2-position in the dihydrodipyrrin, and the method of synthesis of the dihydrodipyrrin. Treatment of a known 3,3-dimethyldihydrodipyrrin-1-carboxaldehyde with an aryl Grignard reagent afforded the dihydrodipyrrin-1-(aryl)carbinol, and upon subsequent acetylation, the corresponding dihydrodipyrrin-1-methyl acetate (dihydrodipyrrin-acetate). Self-condensation of the dihydrodipyrrin-acetate gave a meso-diarylbacteriochlorin (E-W route). A 2,2-dimethyl-5-aryldihydrodipyrrin-1-(aryl)carbinol underwent self-condensation to give a trans-A₂B₂-type meso-tetraarylbacteriochlorin (N-S route). In each case, the aromatization process entails a 2e-/2H⁺ (aerobic) dehydrogenative oxidation following the dihydrodipyrrin self-condensation. Comparison of a tetrahydrodipyrrin-acetal (0%) versus a dihydrodipyrrin-acetal (41%) in bacteriochlorin formation and results with various 1-substituted dihydrodipyrrins revealed the importance of resonance stabilization of the reactive hydrodipyrrin intermediate. Altogether 10 new dihydrodipyrrins and five new bacteriochlorins have been prepared. The bacteriochlorins exhibit characteristic bacteriochlorophyll-like absorption spectra, including a Qy band in the region 726-743 nm.
Collapse
Affiliation(s)
| | - Shaofei Zhang
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA.
| | - Han-Je Kim
- Department of Science Education, Gongju National University of Education, Gongju 314-701, Korea.
| | - Olga Mass
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA.
| | - Masahiko Taniguchi
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA.
| | - Jonathan S Lindsey
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA.
| |
Collapse
|
15
|
Xiong R, Bornhof A, Arkhypchuk AI, Orthaber A, Borbas KE. Furan- and Thiophene-Based Auxochromes Red-shift Chlorin Absorptions and Enable Oxidative Chlorin Polymerizations. Chemistry 2017; 23:4089-4095. [PMID: 27859811 PMCID: PMC5396321 DOI: 10.1002/chem.201604655] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Indexed: 11/08/2022]
Abstract
The de novo syntheses of chemically stable chlorins with five-membered heterocyclic (furane, thiophene, formylfurane and formylthiophene) substituents in selected meso- and β-positions are reported. Heterocycle incorporation in the 3- and 13-positions shifted the chlorin absorption and emission to the red (up to λem =680 nm), thus these readily incorporated substituents function analogously to auxochromes present in chlorophylls, for example, formyl and vinyl groups. Photophysical, theoretical and X-ray crystallographic experiments revealed small but significant differences between the behavior of the furan- and the thiophene-based auxochromes. Four regioisomeric bis-thienylchlorins (3,10; 3,13, 3,15 and 10,15) were oxidatively electropolymerized; the chlorin monomer geometry had a profound impact on the polymerization efficiency and the electrochemical properties of the resulting material. Chemical co-polymerization of 3,13-bis-thienylchlorin with 3-hexylthiophene yielded an organic-soluble red-emitting polymer.
Collapse
Affiliation(s)
- Ruisheng Xiong
- Department of ChemistryÅngström LaboratoryUppsala University, Box 52375120UppsalaSweden
| | - Anna‐Bea Bornhof
- Department of ChemistryÅngström LaboratoryUppsala University, Box 52375120UppsalaSweden
| | - Anna I. Arkhypchuk
- Department of ChemistryÅngström LaboratoryUppsala University, Box 52375120UppsalaSweden
| | - Andreas Orthaber
- Department of ChemistryÅngström LaboratoryUppsala University, Box 52375120UppsalaSweden
| | - K. Eszter Borbas
- Department of ChemistryÅngström LaboratoryUppsala University, Box 52375120UppsalaSweden
| |
Collapse
|
16
|
Zhang S, Lindsey JS. Construction of the Bacteriochlorin Macrocycle with Concomitant Nazarov Cyclization To Form the Annulated Isocyclic Ring: Analogues of Bacteriochlorophyll a. J Org Chem 2017; 82:2489-2504. [DOI: 10.1021/acs.joc.6b02878] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shaofei Zhang
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Jonathan S. Lindsey
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| |
Collapse
|
17
|
Schaberle FA, Abreu AR, Gonçalves NPF, Sá GFF, Pereira MM, Arnaut LG. Ultrafast Dynamics of Manganese(III), Manganese(II), and Free-Base Bacteriochlorin: Is There Time for Photochemistry? Inorg Chem 2017; 56:2677-2689. [PMID: 28206747 DOI: 10.1021/acs.inorgchem.6b02871] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Manganese(III) and manganese(II) complexes of halogenated sulfonamide tetraphenylbacteriochlorins were prepared for the first time via a transmetalation reaction and shown to be stable at room temperature. The behavior of the electronic states of the paramagnetic complexes is remarkably different from those of the metal-free bacteriochlorins or diamagnetic metallobacteriochlorins. The Mn3+ complex exhibits eight electronic transitions between different states from 300 to 1100 nm, with a very prominent band (molar absorption coefficient of ca. 50000 M-1 cm-1) at 829 nm. Ultrafast transient absorption showed the formation of an excited singquintet state that decays to a tripquintet state with a femtosecond lifetime. The tripquintet state decays in 5 ps, yielding a tripseptet state with a 570 ps lifetime. The electronic absorption of the Mn2+ complex more closely resembles those of diamagnetic metallobacteriochlorins, but the longest decay lifetime is only ca. 8 ps. The intense photoacoustic waves generated with near-infrared excitation suggest the use of these complexes in photoacoustic tomography.
Collapse
Affiliation(s)
- Fabio A Schaberle
- Luzitin SA, Ed. Bluepharma , S. Martinho do Bispo, 3045-016 Coimbra, Portugal.,Chemistry Department, University of Coimbra , 3004-535 Coimbra, Portugal
| | - Artur R Abreu
- Luzitin SA, Ed. Bluepharma , S. Martinho do Bispo, 3045-016 Coimbra, Portugal
| | - Nuno P F Gonçalves
- Luzitin SA, Ed. Bluepharma , S. Martinho do Bispo, 3045-016 Coimbra, Portugal
| | - Gonçalo F F Sá
- LaserLeap SA, IPN , R. Pedro Nunes, 3030-199 Coimbra, Portugal
| | - Mariette M Pereira
- Chemistry Department, University of Coimbra , 3004-535 Coimbra, Portugal
| | - Luís G Arnaut
- Chemistry Department, University of Coimbra , 3004-535 Coimbra, Portugal
| |
Collapse
|
18
|
Liu M, Chen CY, Mandal AK, Chandrashaker V, Evans-Storms RB, Pitner JB, Bocian DF, Holten D, Lindsey JS. Bioconjugatable, PEGylated Hydroporphyrins for Photochemistry and Photomedicine. Narrow-Band, Red-Emitting Chlorins. NEW J CHEM 2016; 40:7721-7740. [PMID: 28154477 DOI: 10.1039/c6nj01154c] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Chromophores that absorb and emit in the red spectral region (600-700 nm), are water soluble, and bear a bioconjugatable tether are relatively rare yet would fulfill many applications in photochemistry and photomedicine. Here, three molecular designs have been developed wherein stable synthetic chlorins - analogues of chlorophylls - have been tailored with PEG groups for use in aqueous solution. The designs differ with regard to order of the installation (pre/post-formation of the chlorin macrocycle) and position of the PEG groups. Six PEGylated synthetic chlorins (three free bases, three zinc chelates) have been prepared, of which four are equipped with a bioconjugatable (carboxylic acid) tether. The most effective design for aqueous solubilization entails facial encumbrance where PEG groups project above and below the plane of the hydrophobic disk-like chlorin macrocycle. The chlorins possess strong absorption at ~400 nm (B band) and in the red region (Qy band); regardless of wavelength of excitation, emission occurs in the red region. Excitation in the ~400 nm region thus provides an effective Stokes shift of >200 nm. The four bioconjugatable water-soluble chlorins exhibit Qy absorption/emission in water at 613/614, 636/638, 698/700 and 706/710 nm. The spectral properties are essentially unchanged in DMF and water for the facially encumbered chlorins, which also exhibit narrow Qy absorption and emission bands (full-width-at-half maximum of each <25 nm). The water-solubility was assessed by absorption spectroscopy over the concentration range ~0.4 μM - 0.4 mM. One chlorin was conjugated to a mouse polyclonal IgG antibody for use in flow cytometry with compensation beads for proof-of-principle. The conjugate displayed a sharp signal when excited by a violet laser (405 nm) with emission in the 620-660 nm range. Taken together, the designs described herein augur well for development of a set of spectrally distinct chlorins with relatively sharp bands in the red region.
Collapse
Affiliation(s)
- Mengran Liu
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204
| | - Chih-Yuan Chen
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204
| | - Amit Kumar Mandal
- Department of Chemistry, Washington University, St. Louis, MO 63130-4889
| | | | | | | | - David F Bocian
- Department of Chemistry, University of California, Riverside, CA 92521-0403
| | - Dewey Holten
- Department of Chemistry, Washington University, St. Louis, MO 63130-4889
| | - Jonathan S Lindsey
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204
| |
Collapse
|
19
|
|
20
|
de Assis FF, Ferreira MAB, Brocksom TJ, de Oliveira KT. NIR bacteriochlorin chromophores accessed by Heck and Sonogashira cross-coupling reactions on a tetrabromobacteriochlorin derivative. Org Biomol Chem 2016; 14:1402-12. [DOI: 10.1039/c5ob02228b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis of a new tetrabromobacteriochlorin BCBr4 is reported. Pd cross-coupling reactions yielded tetra-coupled products with a significant red shift in the UV-Vis bands.
Collapse
Affiliation(s)
- Francisco F. de Assis
- Departamento de Química
- Universidade Federal de São Carlos – UFSCar
- 13565-905 São Carlos
- Brazil
| | - Marco A. B. Ferreira
- Departamento de Química
- Universidade Federal de São Carlos – UFSCar
- 13565-905 São Carlos
- Brazil
| | - Timothy J. Brocksom
- Departamento de Química
- Universidade Federal de São Carlos – UFSCar
- 13565-905 São Carlos
- Brazil
| | - Kleber T. de Oliveira
- Departamento de Química
- Universidade Federal de São Carlos – UFSCar
- 13565-905 São Carlos
- Brazil
| |
Collapse
|
21
|
Lindsey JS. De novo synthesis of gem-dialkyl chlorophyll analogues for probing and emulating our green world. Chem Rev 2015; 115:6534-620. [PMID: 26068531 DOI: 10.1021/acs.chemrev.5b00065] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Jonathan S Lindsey
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| |
Collapse
|
22
|
Outlaw VK, d’Andrea FB, Townsend CA. One-pot synthesis of highly substituted N-fused heteroaromatic bicycles from azole aldehydes. Org Lett 2015; 17:1822-5. [PMID: 25815402 PMCID: PMC4500639 DOI: 10.1021/ol5036936] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An efficient route to substituted N-fused aromatic heterocycles, including indolizines, imidazo[1,2-a]pyridines, and imidazo[1,5-a]pyridines from azole aldehydes, is reported. Wittig olefination of the aldehydes with fumaronitrile and triethylphosphine affords predominantly E-alkenes that undergo rapid cyclization upon treatment with a mild base. Substituent control of the 1-, 2-, and 3-positions of the resulting heteroaromatic bicycles is shown. Alternatively, the isolable E-alkene undergoes selective alkylation with electrophiles, followed by in situ annulation to indolizines additionally substituted at the 6-position.
Collapse
Affiliation(s)
- Victor K. Outlaw
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Felipe B. d’Andrea
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Craig A. Townsend
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
23
|
Ra D, Gauger KA, Muthukumaran K, Balasubramanian T, Chandrashaker V, Taniguchi M, Yu Z, Talley DC, Ehudin M, Ptaszek M, Lindsey JS. Progress Towards Synthetic Chlorins with Graded Polarity, Conjugatable Substituents, and Wavelength Tunability. J PORPHYR PHTHALOCYA 2015; 19:547-572. [PMID: 26640361 DOI: 10.1142/s1088424615500042] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Advances in chlorin synthetic chemistry now enable the de novo preparation of diverse chlorin-containing molecular architectures. Five distinct molecular designs have been explored here, including hydrophobic bioconjugatable (oxo)chlorins; a hydrophilic bioconjugatable chlorin; a trans-ethynyl/iodochlorin building block; a set of chlorins bearing electron-rich (methoxy, dimethylamino, methylthio) groups at the 3-position; and a set of ten 3,13-disubstituted chlorins chiefly bearing groups with extended π-moieties. Altogether 23 new chlorins (17 targets, 6 intermediates) have been prepared. The challenge associated with molecular designs that encompass the combination of "hydrophilic, bioconjugatable and wavelength-tunable" chiefly resides in the nature of the hydrophilic unit.
Collapse
Affiliation(s)
- Doyoung Ra
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA
| | - Kelly A Gauger
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA
| | - Kannan Muthukumaran
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA
| | | | | | - Masahiko Taniguchi
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA
| | - Zhanqian Yu
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland 21250
| | - Daniel C Talley
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland 21250
| | - Melanie Ehudin
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland 21250
| | - Marcin Ptaszek
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland 21250
| | - Jonathan S Lindsey
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA
| |
Collapse
|
24
|
Meares A, Satraitis A, Santhanam N, Yu Z, Ptaszek M. Deep-red emissive BODIPY-chlorin arrays excitable with green and red wavelengths. J Org Chem 2015; 80:3858-69. [PMID: 25803423 DOI: 10.1021/acs.joc.5b00119] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We report here the synthesis and characterization of BODIPY-chlorin arrays containing a chlorin subunit, with tunable deep-red (641-685 nm) emission, and one or two BODIPY moieties, absorbing at 504 nm. Two types of arrays were examined: one where BODIPY moieties are attached through a phenylacetylene linker at the 13- or 3,13-positions of chlorin, and a second type where BODIPY is attached at the 10-position of chlorin through an amide linker. Each of the examined arrays exhibits an efficient (≥0.80) energy transfer from BODIPY to the chlorin moiety in both toluene and DMF and exhibits intense fluorescence of chlorin upon excitation of BODIPY at ∼500 nm. Therefore, the effective Stokes shift in such arrays is in the range of 140-180 nm. Dyads with BODIPY attached at the 10-position of chlorin exhibit a bright fluorescence in a range of solvents with different polarities (i.e., toluene, MeOH, DMF, and DMSO). In contrast to this, some of the arrays in which BODIPY is attached at the 3- or at both 3,13-positons of chlorin exhibit significant reduction of fluorescence in polar solvents. Overall, dyads where BODIPY is attached at the 10-position of chlorin exhibit ∼5-fold brighter fluorescence than corresponding chlorin monomers, upon excitation at 500 nm.
Collapse
Affiliation(s)
- Adam Meares
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250, United States
| | - Andrius Satraitis
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250, United States
| | - Nithya Santhanam
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250, United States
| | - Zhanqian Yu
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250, United States
| | - Marcin Ptaszek
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250, United States
| |
Collapse
|
25
|
Arnaut LG, Pereira MM, Dąbrowski JM, Silva EFF, Schaberle FA, Abreu AR, Rocha LB, Barsan MM, Urbańska K, Stochel G, Brett CMA. Photodynamic Therapy Efficacy Enhanced by Dynamics: The Role of Charge Transfer and Photostability in the Selection of Photosensitizers. Chemistry 2014; 20:5346-57. [DOI: 10.1002/chem.201304202] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Indexed: 01/09/2023]
|
26
|
Chen CY, Bocian DF, Lindsey JS. Synthesis of 24 bacteriochlorin isotopologues, each containing a symmetrical pair of 13C or 15N atoms in the inner core of the macrocycle. J Org Chem 2014; 79:1001-16. [PMID: 24422909 DOI: 10.1021/jo402488n] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Synthetic bacteriochlorins containing site-specific isotopic substitution enable spectroscopic interrogation to delineate physicochemical features relevant to bacteriochlorophylls in photosynthesis but have been little explored. A de novo synthesis has been employed to prepare bacteriochlorins wherein each macrocycle contains a pair of (13)C or (15)N atoms yet lacks substituents other than a geminal dimethyl group in each pyrroline ring. Preparation of a dihydrodipyrrin–acetal with single-isotopic substitution gives rise to a bacteriochlorin that contains two isotopic substitutions symmetrically disposed by a 180° rotation about the normal to the plane of the macrocycle. Eight such isotopically substituted bacteriochlorins were prepared from commercially available reactants (bacteriochlorin sites): ((13)C)paraformaldehyde (1, 11); ((13)C)formamide (4, 14); triethyl ((13)C)orthoformate (5, 15); K(13)CN (6, 16); (13)CH3NO2 (9, 19); N,N-dimethyl((13)C)formamide (10, 20); ((15)N)pyrrole (21, 23); CH3(15)NO2 (22, 24). Some loss of (15)N upon TiCl3-mediated McMurry-type ring closure of a nitro((15)N)hexanone is attributed to a parallel sequence of three reactions (Nef, exchange with natural-abundance NH4OAc buffer, and Paal–Knorr ring closure) leading to the dihydrodipyrrin–acetal. Zinc and copper chelates of each bacteriochlorin also were prepared. Together, the 24 bacteriochlorin isotopologues should provide valuable benchmarks for understanding ground- and excited-state molecular physics of the macrocycles related to photosynthetic function of bacteriochlorophylls.
Collapse
|
27
|
Liu M, Ptaszek M, Mass O, Minkler DF, Sommer RD, Bhaumik J, Lindsey JS. Regioselective β-pyrrolic electrophilic substitution of hydrodipyrrin–dialkylboron complexes facilitates access to synthetic models for chlorophyll f. NEW J CHEM 2014. [DOI: 10.1039/c3nj01508d] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
28
|
Jiang J, Vairaprakash P, Reddy KR, Sahin T, Pavan MP, Lubian E, Lindsey JS. Hydrophilic tetracarboxy bacteriochlorins for photonics applications. Org Biomol Chem 2014; 12:86-103. [DOI: 10.1039/c3ob41791c] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
29
|
Aravindu K, Mass O, Vairaprakash P, Springer JW, Yang E, Niedzwiedzki DM, Kirmaier C, Bocian DF, Holten D, Lindsey JS. Amphiphilic chlorins and bacteriochlorins in micellar environments. Molecular design, de novo synthesis, and photophysical properties. Chem Sci 2013. [DOI: 10.1039/c3sc51335a] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
30
|
Deans RM, Mass O, Diers JR, Bocian DF, Lindsey JS. Serendipitous synthetic entrée to tetradehydro analogues of cobalamins. NEW J CHEM 2013. [DOI: 10.1039/c3nj00574g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
31
|
Aravindu K, Kim HJ, Taniguchi M, Dilbeck PL, Diers JR, Bocian DF, Holten D, Lindsey JS. Synthesis and photophysical properties of chlorins bearing 0–4 distinct meso-substituents. Photochem Photobiol Sci 2013; 12:2089-109. [DOI: 10.1039/c3pp50240f] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
32
|
Chen CY, Sun E, Fan D, Taniguchi M, McDowell BE, Yang E, Diers JR, Bocian DF, Holten D, Lindsey JS. Synthesis and Physicochemical Properties of Metallobacteriochlorins. Inorg Chem 2012; 51:9443-64. [DOI: 10.1021/ic301262k] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Chih-Yuan Chen
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204,
United States
| | - Erjun Sun
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204,
United States
| | - Dazhong Fan
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204,
United States
| | - Masahiko Taniguchi
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204,
United States
| | - Brian E. McDowell
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204,
United States
| | - Eunkyung Yang
- Department
of Chemistry, Washington University, St.
Louis, Missouri 63130-4889, United States
| | - James R. Diers
- Department of Chemistry, University of California, Riverside, California 92521-0403, United
States
| | - David F. Bocian
- Department of Chemistry, University of California, Riverside, California 92521-0403, United
States
| | - Dewey Holten
- Department
of Chemistry, Washington University, St.
Louis, Missouri 63130-4889, United States
| | - Jonathan S. Lindsey
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204,
United States
| |
Collapse
|
33
|
Springer JW, Faries KM, Diers JR, Muthiah C, Mass O, Kee HL, Kirmaier C, Lindsey JS, Bocian DF, Holten D. Effects of Substituents on Synthetic Analogs of Chlorophylls. Part 3: The Distinctive Impact of Auxochromes at the 7- versus 3-Positions. Photochem Photobiol 2012; 88:651-74. [DOI: 10.1111/j.1751-1097.2012.01083.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
34
|
Affiliation(s)
- Olga Mass
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204,
United States
| | - Jonathan S. Lindsey
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204,
United States
| |
Collapse
|
35
|
Mass O, Pandithavidana DR, Ptaszek M, Santiago K, Springer JW, Jiao J, Tang Q, Kirmaier C, Bocian DF, Holten D, Lindsey JS. De novo synthesis and properties of analogues of the self-assembling chlorosomal bacteriochlorophylls. NEW J CHEM 2011. [DOI: 10.1039/c1nj20611g] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
36
|
Krayer M, Yang E, Diers JR, Bocian DF, Holten D, Lindsey JS. De novo synthesis and photophysical characterization of annulated bacteriochlorins. Mimicking and extending the properties of bacteriochlorophylls. NEW J CHEM 2011. [DOI: 10.1039/c0nj00771d] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
37
|
Krayer M, Ptaszek M, Kim HJ, Meneely KR, Fan D, Secor K, Lindsey JS. Expanded scope of synthetic bacteriochlorins via improved acid catalysis conditions and diverse dihydrodipyrrin-acetals. J Org Chem 2010; 75:1016-39. [PMID: 20088604 DOI: 10.1021/jo9025572] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bacteriochlorins are attractive candidates for a wide variety of photochemical studies owing to their strong absorption in the near-infrared spectral region. The prior acid-catalysis conditions [BF(3) x O(Et)(2) in CH(3)CN at room temperature] for self-condensation of a dihydrodipyrrin-acetal (bearing a geminal dimethyl group in the pyrroline ring) typically afforded a mixture of three macrocycles: the expected 5-methoxybacteriochlorin (MeOBC-type), a 5-unsubstituted bacteriochlorin (HBC-type), and a free base B,D-tetradehydrocorrin (TDC-type). Here, a broad survey of >20 acids identified four promising acid catalysis conditions of which TMSOTf/2,6-di-tert-butylpyridine in CH(2)Cl(2) at room temperature was most attractive owing to formation of the 5-methoxybacteriochlorin as the sole macrocycle regardless of the pyrrolic substituents in the dihydrodipyrrin-acetal (electron-withdrawing, electron-donating, or no substituent). Eleven new dihydrodipyrrin-acetals were prepared following standard routes. Application of the new acid catalysis conditions has afforded diverse bacteriochlorins (e.g., bearing alkyl/ester, aryl/ester, diester, and no substituents) in a few days from commercially available starting materials. Consideration of the synthetic steps and yields for formation of the dihydrodipyrrin-acetal and bacteriochlorin underpins evaluation of synthetic plans for early installation of bacteriochlorin substituents via the dihydrodipyrrin-acetal versus late installation via derivatization of beta-bromobacteriochlorins. Treatment of the 5-methoxybacteriochlorins with NBS gave regioselective 15-bromination when no pyrrolic substituents were present or when each pyrrole contained two substituents; on the other hand, the presence of a beta-ethoxycarbonyl group caused loss of regioselectivity. The 15 new bacteriochlorins prepared herein exhibit a long-wavelength absorption band in the range 707-759 nm, providing tunable access to the near-infrared region. Taken together, this study expands the scope of available bacteriochlorins for fundamental studies and diverse applications.
Collapse
Affiliation(s)
- Michael Krayer
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Ptaszek M, Lahaye D, Krayer M, Muthiah C, Lindsey JS. De Novo Synthesis of Long-Wavelength Absorbing Chlorin-13,15-dicarboximides. J Org Chem 2010; 75:1659-73. [DOI: 10.1021/jo902649d] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Marcin Ptaszek
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204
| | - Dorothée Lahaye
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204
| | - Michael Krayer
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204
| | - Chinnasamy Muthiah
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204
| | - Jonathan S. Lindsey
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204
| |
Collapse
|