1
|
Bharti A, Jain U, Chauhan N. From lab to field: Nano-biosensors for real-time plant nutrient tracking. PLANT NANO BIOLOGY 2024; 9:100079. [DOI: 10.1016/j.plana.2024.100079] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
2
|
Ming T, Lan T, Yu M, Cheng S, Duan X, Wang H, Deng J, Kong D, Yang S, Shen Z. Advancements in Biosensors for Point-of-Care Testing of Nucleic Acid. Crit Rev Anal Chem 2024:1-16. [PMID: 38889541 DOI: 10.1080/10408347.2024.2366943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Rapid, low-cost and high-specific diagnosis based on nucleic acid detection is pivotal in both detecting and controlling various infectious diseases, effectively curbing their spread. Moreover, the analysis of circulating DNA in whole blood has emerged as a promising noninvasive strategy for cancer diagnosis and monitoring. Although traditional nucleic acid detection methods are reliable, their time-consuming and intricate processes restrict their application in rapid field assays. Consequently, an urgent emphasis on point-of-care testing (POCT) of nucleic acids has arisen. POCT enables timely and efficient detection of specific sequences, acting as a deterrent against infection sources and potential tumor threats. To address this imperative need, it is essential to consolidate key aspects and chart future directions in POCT biosensors development. This review aims to provide an exhaustive and meticulous analysis of recent advancements in POCT devices for nucleic acid diagnosis. It will comprehensively compare these devices across crucial dimensions, encompassing their integrated structures, the synthesized nanomaterials harnessed, and the sophisticated detection principles employed. By conducting a rigorous evaluation of the current research landscape, this review will not only spotlight achievements but also identify limitations, offering valuable insights into the future trajectory of nucleic acid POCT biosensors. Through this comprehensive analysis, the review aspires to serve as an indispensable guide for fostering the development of more potent biosensors, consequently fostering precise and efficient POCT applications for nucleic acids.
Collapse
Affiliation(s)
- Tao Ming
- Institute of Transplantation Medicine, School of Medicine, Nankai University, Tianjin, China
| | - Tingting Lan
- Institute of Transplantation Medicine, School of Medicine, Nankai University, Tianjin, China
| | - Mingxing Yu
- Institute of Transplantation Medicine, School of Medicine, Nankai University, Tianjin, China
| | - Shuhan Cheng
- Institute of Transplantation Medicine, School of Medicine, Nankai University, Tianjin, China
| | - Xu Duan
- Institute of Transplantation Medicine, School of Medicine, Nankai University, Tianjin, China
| | - Hong Wang
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Juan Deng
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Deling Kong
- Institute of Transplantation Medicine, School of Medicine, Nankai University, Tianjin, China
| | - Shuang Yang
- Institute of Transplantation Medicine, School of Medicine, Nankai University, Tianjin, China
| | - Zhongyang Shen
- Institute of Transplantation Medicine, School of Medicine, Nankai University, Tianjin, China
| |
Collapse
|
3
|
Yari A, Yousefi Khoshsabegheh H, Zarezadeh Y, Amraei M, Soufi Boubakran M, Motlagh ME. Iranian primary healthcare system's response to the COVID-19 pandemic using the healthcare incident command system. PLoS One 2023; 18:e0290273. [PMID: 37607162 PMCID: PMC10443878 DOI: 10.1371/journal.pone.0290273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 07/28/2023] [Indexed: 08/24/2023] Open
Abstract
The present study aimed to evaluate the effects of the healthcare incident command system (HICS) on the district health networks (DHNs) covered by provincial Medical Universities (PMU) in terms of the management and commanding of the COVID-19 pandemic in Iran. This study was a cross-sectional survey. The study was performed in Iran in June 2020 in 60 DHNs, 41 of which had an active HICS. Data were collected on eight HCIS dimensions from all 60 DHNs by trained crisis management experts to evaluate the effects of HICS use on management of the COVID-19 pandemic. For all the 60 DHNs, the mean score of the COVID-19 incident command and management was 78.79 ± 11.90 (range 20-100); with mean scores highest for organizational support and coordination and lowest for logistic and planning. Significant differences were observed between the DHNs with active HICS and DHNs with inactive or no HICS in terms of the mean scores of incident management and command and their associated dimensions. According to the results, the HICS use had a positive impact on the improvement of incident management and command and all the related dimensions. Therefore, the HICS could be conducted and implemented in primary healthcare for the systematic and proper management of crises caused by infectious diseases and increasing primary healthcare system efficiency in response to these crises.
Collapse
Affiliation(s)
- Arezoo Yari
- Department of Health in Emergencies and Disasters, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
- Social Determinants of Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Homa Yousefi Khoshsabegheh
- Department of Health in Emergencies and Disasters, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Disaster Risk Management Office, Ministry of Health and Medical Education, Tehran, Iran
| | - Yadolah Zarezadeh
- Social Determinants of Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Majid Amraei
- Disaster Risk Management Office, Ministry of Health and Medical Education, Tehran, Iran
| | | | | |
Collapse
|
4
|
Yunus G, Singh R, Raveendran S, Kuddus M. Electrochemical biosensors in healthcare services: bibliometric analysis and recent developments. PeerJ 2023; 11:e15566. [PMID: 37397018 PMCID: PMC10312160 DOI: 10.7717/peerj.15566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 05/24/2023] [Indexed: 07/04/2023] Open
Abstract
Biosensors are nowadays being used in various fields including disease diagnosis and clinical analysis. The ability to detect biomolecules associated with disease is vital not only for accurate diagnosis of disease but also for drug discovery and development. Among the different types of biosensors, electrochemical biosensor is most widely used in clinical and health care services especially in multiplex assays due to its high susceptibility, low cost and small in size. This article includes comprehensive review of biosensors in medical field with special emphasis on electrochemical biosensors for multiplex assays and in healthcare services. Also, the publications on electrochemical biosensors are increasing rapidly; therefore, it is crucial to be aware of any latest developments or trends in this field of research. We used bibliometric analyses to summarize the progress of this research area. The study includes global publication counts on electrochemical biosensors for healthcare along with various bibliometric data analyses by VOSviewer software. The study also recognizes the top authors and journals in the related area, and determines proposal for monitoring research.
Collapse
Affiliation(s)
- Ghazala Yunus
- Department of Basic Science, University of Hail, Hail, Saudi Arabia
| | - Rachana Singh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, Uttar Pradesh, India
| | - Sindhu Raveendran
- Department of Food Technology, TKM Institute of Technology, Kollam, Kerala, India
| | - Mohammed Kuddus
- Department of Biochemistry, College of Medicine, University of Ha’il, Hail, Saudi Arabia
| |
Collapse
|
5
|
Dkhar DS, Kumari R, Mahapatra S, Divya, Kumar R, Tripathi T, Chandra P. Antibody-receptor bioengineering and its implications in designing bioelectronic devices. Int J Biol Macromol 2022; 218:225-242. [PMID: 35870626 DOI: 10.1016/j.ijbiomac.2022.07.109] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 11/16/2022]
Abstract
Antibodies play a crucial role in the defense mechanism countering pathogens or foreign antigens in eukaryotes. Its potential as an analytical and diagnostic tool has been exploited for over a century. It forms immunocomplexes with a specific antigen, which is the basis of immunoassays and aids in developing potent biosensors. Antibody-based sensors allow for the quick and accurate detection of various analytes. Though classical antibodies have prolonged been used as bioreceptors in biosensors fabrication due to their increased fragility, they have been engineered into more stable fragments with increased exposure of their antigen-binding sites in the recent era. In biosensing, the formats constructed by antibody engineering can enhance the signal since the resistance offered by a conventional antibody is much more than these fragments. Hence, signal amplification can be observed when antibody fragments are utilized as bioreceptors instead of full-length antibodies. We present the first systematic review on engineered antibodies as bioreceptors with the description of their engineering methods. The detection of various target analytes, including small molecules, macromolecules, and cells using antibody-based biosensors, has been discussed. A comparison of the classical polyclonal, monoclonal, and engineered antibodies as bioreceptors to construct highly accurate, sensitive, and specific sensors is also discussed.
Collapse
Affiliation(s)
- Daphika S Dkhar
- Laboratory of Bio-Physio Sensors and Nano-bioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Uttar Pradesh 221005, India
| | - Rohini Kumari
- Laboratory of Bio-Physio Sensors and Nano-bioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Uttar Pradesh 221005, India
| | - Supratim Mahapatra
- Laboratory of Bio-Physio Sensors and Nano-bioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Uttar Pradesh 221005, India
| | - Divya
- Laboratory of Bio-Physio Sensors and Nano-bioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Uttar Pradesh 221005, India
| | - Rahul Kumar
- Laboratory of Bio-Physio Sensors and Nano-bioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Uttar Pradesh 221005, India
| | - Timir Tripathi
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India; Regional Director's Office, Indira Gandhi National Open University (IGNOU), Regional Centre Kohima, Kenuozou, Kohima 797001, India.
| | - Pranjal Chandra
- Laboratory of Bio-Physio Sensors and Nano-bioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Uttar Pradesh 221005, India.
| |
Collapse
|
6
|
Haleem A, Javaid M, Singh RP, Suman R, Rab S. Biosensors applications in medical field: A brief review. SENSORS INTERNATIONAL 2021. [DOI: 10.1016/j.sintl.2021.100100] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|