1
|
Zhang H, Yahagi T, Miyamoto N, Chen C, Jiang Q, Qian PY, Sun J. Circatidal control of gene expression in the deep-sea hot vent shrimp Rimicaris leurokolos. Proc Biol Sci 2025; 292:20242970. [PMID: 39904385 PMCID: PMC11793976 DOI: 10.1098/rspb.2024.2970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/08/2025] [Accepted: 01/08/2025] [Indexed: 02/06/2025] Open
Abstract
Biological clocks are a ubiquitous feature of all life, enabling the use of natural environmental cycles to track time. Although studies on circadian rhythms have contributed greatly to the knowledge of chronobiology, biological rhythms in dark biospheres such as the deep sea remain poorly understood. Here, based on a free-running experiment in the laboratory, we reveal potentially endogenous rhythms in the gene expression of the deep-sea hydrothermal vent shrimp Rimicaris leurokolos. Oscillations with approximately 12 h periods, probably reflecting tidal influence, greatly prevail over others in the temporal transcriptome, indicating R. leurokolos probably depends on a circatidal clock consisting of at least some components independent from the circadian clocks. The tidal transcripts exhibit an antiphased expression pattern divided into two internally synchronized clusters, correlated with wide-ranging biological processes that occur in the nucleus and cytoplasm, respectively. In addition, the tidal transcripts showed great similarities with genes in fruit flies and mice exhibiting approximately 12 h ultradian rhythms, indicating that the tide probably had a broad impact on the evolution of approximately 12 h oscillations found across the Metazoa. These findings not only provide new insights into the temporal adaptations in deep-sea organisms but also highlight hydrothermal vent organisms as intriguing models for chronobiological studies, particularly those linked to approximately 12 h ultradian rhythms.
Collapse
Affiliation(s)
- Hongyin Zhang
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao266003, People’s Republic of China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Laoshan Laboratory, Qingdao266237, People’s Republic of China
| | - Takuya Yahagi
- Department of Marine Ecosystem Science, Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba277-8564, Japan
| | - Norio Miyamoto
- X-STAR, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, Kanagawa237-0061, Japan
| | - Chong Chen
- X-STAR, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, Kanagawa237-0061, Japan
| | - Qingqiu Jiang
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao266003, People’s Republic of China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Laoshan Laboratory, Qingdao266237, People’s Republic of China
| | - Pei-Yuan Qian
- Department of Ocean Science, Hong Kong University of Science and Technology, Clear Water Bay Road, Hong Kong
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, People’s Republic of China
| | - Jin Sun
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao266003, People’s Republic of China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Laoshan Laboratory, Qingdao266237, People’s Republic of China
| |
Collapse
|
2
|
Köbler C, Schmelling NM, Wiegard A, Pawlowski A, Pattanayak GK, Spät P, Scheurer NM, Sebastian KN, Stirba FP, Berwanger LC, Kolkhof P, Maček B, Rust MJ, Axmann IM, Wilde A. Two KaiABC systems control circadian oscillations in one cyanobacterium. Nat Commun 2024; 15:7674. [PMID: 39227593 PMCID: PMC11372060 DOI: 10.1038/s41467-024-51914-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 08/20/2024] [Indexed: 09/05/2024] Open
Abstract
The circadian clock of cyanobacteria, which predicts daily environmental changes, typically includes a standard oscillator consisting of proteins KaiA, KaiB, and KaiC. However, several cyanobacteria have diverse Kai protein homologs of unclear function. In particular, Synechocystis sp. PCC 6803 harbours, in addition to a canonical kaiABC gene cluster (named kaiAB1C1), two further kaiB and kaiC homologs (kaiB2, kaiB3, kaiC2, kaiC3). Here, we identify a chimeric KaiA homolog, named KaiA3, encoded by a gene located upstream of kaiB3. At the N-terminus, KaiA3 is similar to response-regulator receiver domains, whereas its C-terminal domain resembles that of KaiA. Homology analysis shows that a KaiA3-KaiB3-KaiC3 system exists in several cyanobacteria and other bacteria. Using the Synechocystis sp. PCC 6803 homologs, we observe circadian oscillations in KaiC3 phosphorylation in vitro in the presence of KaiA3 and KaiB3. Mutations of kaiA3 affect KaiC3 phosphorylation, leading to growth defects under both mixotrophic and chemoheterotrophic conditions. KaiC1 and KaiC3 exhibit phase-locked free-running phosphorylation rhythms. Deletion of either system (∆kaiAB1C1 or ∆kaiA3B3C3) alters the period of the cellular backscattering rhythm. Furthermore, both oscillators are required to maintain high-amplitude, self-sustained backscatter oscillations with a period of approximately 24 h, indicating their interconnected nature.
Collapse
Affiliation(s)
- Christin Köbler
- Institute of Biology III, Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Nicolas M Schmelling
- Institute for Synthetic Microbiology, Biology Department, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Anika Wiegard
- Institute for Synthetic Microbiology, Biology Department, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Alice Pawlowski
- Institute for Synthetic Microbiology, Biology Department, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Gopal K Pattanayak
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL, 60637, USA
| | - Philipp Spät
- Department of Quantitative Proteomics, Interfaculty Institute for Cell Biology, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
| | - Nina M Scheurer
- Institute of Biology III, Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Kim N Sebastian
- Institute of Biology III, Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Florian P Stirba
- Institute for Synthetic Microbiology, Biology Department, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Lutz C Berwanger
- Institute for Synthetic Microbiology, Biology Department, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Petra Kolkhof
- Institute for Synthetic Microbiology, Biology Department, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Boris Maček
- Department of Quantitative Proteomics, Interfaculty Institute for Cell Biology, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
| | - Michael J Rust
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL, 60637, USA
| | - Ilka M Axmann
- Institute for Synthetic Microbiology, Biology Department, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany.
| | - Annegret Wilde
- Institute of Biology III, Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany.
| |
Collapse
|
3
|
Obodo D, Outland EH, Hughey JJ. LimoRhyde2: Genomic analysis of biological rhythms based on effect sizes. PLoS One 2023; 18:e0292089. [PMID: 38096249 PMCID: PMC10721038 DOI: 10.1371/journal.pone.0292089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 09/12/2023] [Indexed: 12/17/2023] Open
Abstract
Genome-scale data have revealed daily rhythms in various species and tissues. However, current methods to assess rhythmicity largely restrict their focus to quantifying statistical significance, which may not reflect biological relevance. To address this limitation, we developed a method called LimoRhyde2 (the successor to our method LimoRhyde), which focuses instead on rhythm-related effect sizes and their uncertainty. For each genomic feature, LimoRhyde2 fits a curve using a series of linear models based on periodic splines, moderates the fits using an Empirical Bayes approach called multivariate adaptive shrinkage (Mash), then uses the moderated fits to calculate rhythm statistics such as peak-to-trough amplitude. The periodic splines capture non-sinusoidal rhythmicity, while Mash uses patterns in the data to account for different fits having different levels of noise. To demonstrate LimoRhyde2's utility, we applied it to multiple circadian transcriptome datasets. Overall, LimoRhyde2 prioritized genes having high-amplitude rhythms in expression, whereas a prior method (BooteJTK) prioritized "statistically significant" genes whose amplitudes could be relatively small. Thus, quantifying effect sizes using approaches such as LimoRhyde2 has the potential to transform interpretation of genomic data related to biological rhythms.
Collapse
Affiliation(s)
- Dora Obodo
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Program in Chemical and Physical Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Elliot H. Outland
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Jacob J. Hughey
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Program in Chemical and Physical Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| |
Collapse
|
4
|
Obodo D, Outland EH, Hughey JJ. LimoRhyde2: genomic analysis of biological rhythms based on effect sizes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.02.526897. [PMID: 36778295 PMCID: PMC9915588 DOI: 10.1101/2023.02.02.526897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Genome-scale data have revealed daily rhythms in various species and tissues. However, current methods to assess rhythmicity largely restrict their focus to quantifying statistical significance, which may not reflect biological relevance. To address this limitation, we developed a method called LimoRhyde2 (the successor to our method LimoRhyde), which focuses instead on rhythm-related effect sizes and their uncertainty. For each genomic feature, LimoRhyde2 fits a curve using a series of linear models based on periodic splines, moderates the fits using an Empirical Bayes approach called multivariate adaptive shrinkage (Mash), then uses the moderated fits to calculate rhythm statistics such as peak-to-trough amplitude. The periodic splines capture non-sinusoidal rhythmicity, while Mash uses patterns in the data to account for different fits having different levels of noise. To demonstrate LimoRhyde2's utility, we applied it to multiple circadian transcriptome datasets. Overall, LimoRhyde2 prioritized genes having high-amplitude rhythms in expression, whereas a prior method (BooteJTK) prioritized "statistically significant" genes whose amplitudes could be relatively small. Thus, quantifying effect sizes using approaches such as LimoRhyde2 has the potential to transform interpretation of genomic data related to biological rhythms.
Collapse
Affiliation(s)
- Dora Obodo
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Program in Chemical and Physical Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Elliot H. Outland
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jacob J. Hughey
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Program in Chemical and Physical Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
5
|
Collins EJ, Cervantes-Silva MP, Timmons GA, O'Siorain JR, Curtis AM, Hurley JM. Post-transcriptional circadian regulation in macrophages organizes temporally distinct immunometabolic states. Genome Res 2021; 31:171-185. [PMID: 33436377 PMCID: PMC7849412 DOI: 10.1101/gr.263814.120] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 11/20/2020] [Indexed: 01/07/2023]
Abstract
Our core timekeeping mechanism, the circadian clock, plays a vital role in immunity. Although the mechanics of circadian control over the immune response is generally explained by transcriptional activation or repression derived from this clock's transcription-translation negative-feedback loop, research suggests that some regulation occurs beyond transcriptional activity. We comprehensively profiled the transcriptome and proteome of murine bone marrow-derived macrophages and found that only 15% of the circadian proteome had corresponding oscillating mRNA, suggesting post-transcriptional regulation influences macrophage clock regulatory output to a greater extent than any other tissue previously profiled. This regulation may be explained by the robust temporal enrichment we identified for proteins involved in degradation and translation. Extensive post-transcriptional temporal-gating of metabolic pathways was also observed and further corresponded with daily variations in ATP production, mitochondrial morphology, and phagocytosis. The disruption of this circadian post-transcriptional metabolic regulation impaired immune functionality. Our results demonstrate that cell-intrinsic post-transcriptional regulation is a primary driver of circadian output in macrophages and that this regulation, particularly of metabolic pathways, plays an important role in determining their response to immune stimuli.
Collapse
Affiliation(s)
- Emily J Collins
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | - Mariana P Cervantes-Silva
- School of Pharmacy and Biomedical Sciences and Tissue Engineering Research Group, Royal College of Surgeons in Ireland, Dublin D02, Ireland
| | - George A Timmons
- School of Pharmacy and Biomedical Sciences and Tissue Engineering Research Group, Royal College of Surgeons in Ireland, Dublin D02, Ireland
| | - James R O'Siorain
- School of Pharmacy and Biomedical Sciences and Tissue Engineering Research Group, Royal College of Surgeons in Ireland, Dublin D02, Ireland
| | - Annie M Curtis
- School of Pharmacy and Biomedical Sciences and Tissue Engineering Research Group, Royal College of Surgeons in Ireland, Dublin D02, Ireland
| | - Jennifer M Hurley
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
- Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| |
Collapse
|
6
|
Pelham JF, Dunlap JC, Hurley JM. Intrinsic disorder is an essential characteristic of components in the conserved circadian circuit. Cell Commun Signal 2020; 18:181. [PMID: 33176800 PMCID: PMC7656774 DOI: 10.1186/s12964-020-00658-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 09/06/2020] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION The circadian circuit, a roughly 24 h molecular feedback loop, or clock, is conserved from bacteria to animals and allows for enhanced organismal survival by facilitating the anticipation of the day/night cycle. With circadian regulation reportedly impacting as high as 80% of protein coding genes in higher eukaryotes, the protein-based circadian clock broadly regulates physiology and behavior. Due to the extensive interconnection between the clock and other cellular systems, chronic disruption of these molecular rhythms leads to a decrease in organismal fitness as well as an increase of disease rates in humans. Importantly, recent research has demonstrated that proteins comprising the circadian clock network display a significant amount of intrinsic disorder. MAIN BODY In this work, we focus on the extent of intrinsic disorder in the circadian clock and its potential mechanistic role in circadian timing. We highlight the conservation of disorder by quantifying the extent of computationally-predicted protein disorder in the core clock of the key eukaryotic circadian model organisms Drosophila melanogaster, Neurospora crassa, and Mus musculus. We further examine previously published work, as well as feature novel experimental evidence, demonstrating that the core negative arm circadian period drivers FREQUENCY (Neurospora crassa) and PERIOD-2 (PER2) (Mus musculus), possess biochemical characteristics of intrinsically disordered proteins. Finally, we discuss the potential contributions of the inherent biophysical principals of intrinsically disordered proteins that may explain the vital mechanistic roles they play in the clock to drive their broad evolutionary conservation in circadian timekeeping. CONCLUSION The pervasive conservation of disorder amongst the clock in the crown eukaryotes suggests that disorder is essential for optimal circadian timing from fungi to animals, providing vital homeostatic cellular maintenance and coordinating organismal physiology across phylogenetic kingdoms. Video abstract.
Collapse
Affiliation(s)
- Jacqueline F. Pelham
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180 USA
| | - Jay C. Dunlap
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755 USA
| | - Jennifer M. Hurley
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180 USA
- Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY 12018 USA
| |
Collapse
|
7
|
Chemical modulation of circadian rhythms and assessment of cellular behavior via indirubin and derivatives. Methods Enzymol 2020; 639:115-140. [PMID: 32475398 DOI: 10.1016/bs.mie.2020.04.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Circadian rhythms are critical regulators of many physiological and behavioral functions. The use and abilities of small molecules to affect oscillations have recently received significant attention. These manipulations can be reversible and tunable, and have been used to study various biological mechanisms and molecular properties. Here, we outline procedures for assessment of cellular circadian changes following treatment with small molecules, using luminescent reporters. We describe reporter generation, luminometry experiments, and data analysis. Protocols for studies of accompanying effects on cells, including motility, viability, and anchorage-independent proliferation assays are also presented. As examples, we use indirubin-3'-oxime and two derivatives, 5-iodo-indirubin-3'-oxime and 5-sulfonic acid-indirubin-3'-oxime. In this case study, we analyze effects of these compounds on Bmal1 and Per2 (positive and negative core circadian elements) oscillations and provide step-by-step protocols for data analysis, including removal of trends from raw data, period estimations, and statistical analysis. The reader is provided with detailed protocols, and guidance regarding selection of and alternative approaches.
Collapse
|
8
|
De los Santos H, Collins EJ, Mann C, Sagan AW, Jankowski MS, Bennett KP, Hurley JM. ECHO: an application for detection and analysis of oscillators identifies metabolic regulation on genome-wide circadian output. Bioinformatics 2020; 36:773-781. [PMID: 31384918 PMCID: PMC7523678 DOI: 10.1093/bioinformatics/btz617] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 07/24/2019] [Accepted: 08/02/2019] [Indexed: 01/07/2023] Open
Abstract
MOTIVATION Time courses utilizing genome scale data are a common approach to identifying the biological pathways that are controlled by the circadian clock, an important regulator of organismal fitness. However, the methods used to detect circadian oscillations in these datasets are not able to accommodate changes in the amplitude of the oscillations over time, leading to an underestimation of the impact of the clock on biological systems. RESULTS We have created a program to efficaciously identify oscillations in large-scale datasets, called the Extended Circadian Harmonic Oscillator application, or ECHO. ECHO utilizes an extended solution of the fixed amplitude oscillator that incorporates the amplitude change coefficient. Employing synthetic datasets, we determined that ECHO outperforms existing methods in detecting rhythms with decreasing oscillation amplitudes and in recovering phase shift. Rhythms with changing amplitudes identified from published biological datasets revealed distinct functions from those oscillations that were harmonic, suggesting purposeful biologic regulation to create this subtype of circadian rhythms. AVAILABILITY AND IMPLEMENTATION ECHO's full interface is available at https://github.com/delosh653/ECHO. An R package for this functionality, echo.find, can be downloaded at https://CRAN.R-project.org/package=echo.find. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Hannah De los Santos
- Department of Computer Science, Troy, NY 12180, USA,Institute for Data Exploration and Applications, Troy, NY 12180, USA
| | | | | | - April W Sagan
- Department of Mathematical Sciences, Troy, NY 12180, USA
| | | | - Kristin P Bennett
- Department of Computer Science, Troy, NY 12180, USA,Institute for Data Exploration and Applications, Troy, NY 12180, USA,Department of Mathematical Sciences, Troy, NY 12180, USA
| | - Jennifer M Hurley
- Department of Biological Sciences, Troy, NY 12180, USA,Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA,To whom correspondence should be addressed.
| |
Collapse
|
9
|
De Los Santos H, Bennett KP, Hurley JM. ENCORE: A Visualization Tool for Insight into Circadian Omics. ACM-BCB ... ... : THE ... ACM CONFERENCE ON BIOINFORMATICS, COMPUTATIONAL BIOLOGY AND BIOMEDICINE. ACM CONFERENCE ON BIOINFORMATICS, COMPUTATIONAL BIOLOGY AND BIOMEDICINE 2019; 2019:5-14. [PMID: 31754663 PMCID: PMC6868525 DOI: 10.1145/3307339.3342137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Circadian rhythms are 24-hour biological cycles that control daily molecular rhythms in many organisms. The cellular elements that fall under the regulation of the clock are often studied through the use of omics-scale data sets gathered over time to determine how circadian regulation impacts cellular physiology. Previously, we created the ECHO (Extended Circadian Harmonic Oscillator) tool to identify rhythms in these data sets. Using ECHO, we found that circadian oscillations widely undergo a change in amplitude over time and that these amplitude changes have a biological function in the cell. However, ECHO does not align gene ontologies with the identified oscillating genes to give functional context. Thus, we created ENCORE (ECHO Native Circadian Ontological Rhythmicity Explorer), a novel visualization tool which combines the disparate databases of Gene Ontologies, protein-protein interactions, and auxiliary information to uncover the meaning of circadianly-regulated genes. This freely-available tool performs automatic enrichment and creates publication-worthy visualizations which we used to extend previously-gathered data on circadian regulation of physiology from published omics-scale studies in three circadian model organisms: mouse, fruit fly, and Neurospora crassa.
Collapse
Affiliation(s)
- Hannah De Los Santos
- Institute for Data Exploration and Applications/Department of Computer Science, Rensselaer Polytechnic Institute, Troy, NY
| | - Kristin P Bennett
- Institute for Data Exploration and Applications/Department of Computer Science, Rensselaer Polytechnic Institute, Troy, NY
| | - Jennifer M Hurley
- Department of Biological Sciences/Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY
| |
Collapse
|