1
|
Chen J, Zhang L, Yu R. Nucleic acid aptamer based thermally oxidized porous silicon/zinc oxide microarray chip for detection of ochratoxin A in cereals. Food Chem 2024; 442:138384. [PMID: 38219567 DOI: 10.1016/j.foodchem.2024.138384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/20/2023] [Accepted: 01/04/2024] [Indexed: 01/16/2024]
Abstract
A nucleic acid aptamer based thermally oxidized porous silicon/zinc oxide microarray chip was constructed for the detection of ochratoxin A. The hybrid chains formed by aptamer and complementary chains labeled with fluorescent groups and fluorescent burst groups were used as recognition molecules, and the detection of toxins was accomplished on the chip by the principle of fluorescence signal burst and recovery. The modified QuEChERS method was used for sample pretreatment and the performance of the method was evaluated. The results showed that the linear range was 0.02 ∼ 200 ng/kg with the detection limit of 0.0196 ng/kg under the optimal detection conditions. The method was applied to different cereals with the recoveries of 90.30 ∼ 111.69 %. The developed microarray chip has the advantages of being cost-effective, easy to prepare, sensitive and specific, and can provide a new method for the detection of other toxins.
Collapse
Affiliation(s)
- Jiayu Chen
- College of Food Science, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing 163319,PR China
| | - Liyuan Zhang
- College of Food Science, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing 163319,PR China.
| | - Runzhong Yu
- College of Information and Electrical Engineering, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Daqing 163319,PR China; ey Laboratory of Agro-products Processing and Quality Safety of Heilongjiang Province, Daqing 163319, PR China; Chinese National Engineering Research Center, Daqing 163319, PR China.
| |
Collapse
|
2
|
Suni II. Substrate Materials for Biomolecular Immobilization within Electrochemical Biosensors. BIOSENSORS 2021; 11:239. [PMID: 34356710 PMCID: PMC8301891 DOI: 10.3390/bios11070239] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/01/2021] [Accepted: 07/08/2021] [Indexed: 01/17/2023]
Abstract
Electrochemical biosensors have potential applications for agriculture, food safety, environmental monitoring, sports medicine, biomedicine, and other fields. One of the primary challenges in this field is the immobilization of biomolecular probes atop a solid substrate material with adequate stability, storage lifetime, and reproducibility. This review summarizes the current state of the art for covalent bonding of biomolecules onto solid substrate materials. Early research focused on the use of Au electrodes, with immobilization of biomolecules through ω-functionalized Au-thiol self-assembled monolayers (SAMs), but stability is usually inadequate due to the weak Au-S bond strength. Other noble substrates such as C, Pt, and Si have also been studied. While their nobility has the advantage of ensuring biocompatibility, it also has the disadvantage of making them relatively unreactive towards covalent bond formation. With the exception of Sn-doped In2O3 (indium tin oxide, ITO), most metal oxides are not electrically conductive enough for use within electrochemical biosensors. Recent research has focused on transition metal dichalcogenides (TMDs) such as MoS2 and on electrically conductive polymers such as polyaniline, polypyrrole, and polythiophene. In addition, the deposition of functionalized thin films from aryldiazonium cations has attracted significant attention as a substrate-independent method for biofunctionalization.
Collapse
Affiliation(s)
- Ian Ivar Suni
- Materials Technology Center, Southern Illinois University, Carbondale, IL 62901, USA; ; Tel.: +1-618-453-7822
- School of Chemistry and Biomolecular Sciences, Southern Illinois University, Carbondale, IL 62901, USA
- School of Mechanical, Aerospace and Materials Engineering, Southern Illinois University, Carbondale, IL 62901, USA
| |
Collapse
|
3
|
Sarkar J, Kumar A. Recent Advances in Biomaterial-Based High-Throughput Platforms. Biotechnol J 2020; 16:e2000288. [PMID: 32914497 DOI: 10.1002/biot.202000288] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 08/30/2020] [Indexed: 12/15/2022]
Abstract
High-throughput systems allow screening and analysis of large number of samples simultaneously under same conditions. Over recent years, high-throughput systems have found applications in fields other than drug discovery like bioprocess industries, pollutant detection, material microarrays, etc. With the introduction of materials in such HT platforms, the screening system has been enabled for solid phases apart from conventional solution phase. The use of biomaterials has further facilitated cell-based assays in such platforms. Here, the authors have focused on the recent developments in biomaterial-based platforms including the fabricationusing contact and non-contact methods and utilization of such platforms for discovery of novel biomaterials exploiting interaction of biological entities with surface and bulk properties. Finally, the authors have elaborated on the application of the biomaterial-based high-throughput platforms in tissue engineering and regenerative medicine, cancer and stem cell studies. The studies show encouraging applications of biomaterial microarrays. However, success in clinical applicability still seems to be a far off task majorly due to absence of robust characterization and analysis techniques. Extensive focus is required for developing personalized medicine, analytical tools and storage/shelf-life of cell laden microarrays.
Collapse
Affiliation(s)
- Joyita Sarkar
- Institute of Chemical Technology Mumbai, Marathwada Campus, Jalna, BT-6/7, Biotechnology Park, Additional MIDC Area, Aurangabad Road, Jalna, Maharashtra, 43120, India.,Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208016, India
| | - Ashok Kumar
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208016, India.,Centre for Environmental Sciences and Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208016, India.,Centre for Nanosciences, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208016, India
| |
Collapse
|
4
|
McKenas CG, Fehr JM, Donley CL, Lockett MR. Thiol-Ene Modified Amorphous Carbon Substrates: Surface Patterning and Chemically Modified Electrode Preparation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:10529-10536. [PMID: 27657877 DOI: 10.1021/acs.langmuir.6b02961] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Amorphous carbon (aC) films are chemically stable under ambient conditions or when interfaced with aqueous solutions, making them a promising material for preparing biosensors and chemically modified electrodes. There are a number of wet chemical methods capable of tailoring the reactivity and wettability of aC films, but few of these chemistries are compatible with photopatterning. Here, we introduce a method to install thiol groups directly onto the surface of aC films. These terminal thiols are compatible with thiol-ene click reactions, which allowed us to rapidly functionalize and pattern the surface of the aC films. We thoroughly characterized the aC films and confirmed the installation of surface-bound thiols does not significantly oxidize the surface or change its topography. We also determined the conditions needed to selectively attach alkene-containing molecules to these films and show the reaction is proceeding through a thiol-mediated reaction. Lastly, we demonstrate the utility of our approach by photopatterning the aC films and preparing ferrocene-modified aC electrodes. The chemistry described here provides a rapid means of fabricating sensors and preparing photoaddressable arrays of (bio)molecules on stable carbon interfaces.
Collapse
Affiliation(s)
- Catherine G McKenas
- Department of Chemistry, University of North Carolina at Chapel Hill , Kenan and Caudill Laboratories, 125 South Road, Chapel Hill, North Carolina 27599-3290, United States
| | - Julia M Fehr
- Department of Chemistry, University of North Carolina at Chapel Hill , Kenan and Caudill Laboratories, 125 South Road, Chapel Hill, North Carolina 27599-3290, United States
| | - Carrie L Donley
- Chapel Hill Analytical and Nanofabrication Laboratory, University of North Carolina at Chapel Hill , Chapman Hall, 205 South Columbia Street, Chapel Hill, North Carolina 27599-3216, United States
| | - Matthew R Lockett
- Department of Chemistry, University of North Carolina at Chapel Hill , Kenan and Caudill Laboratories, 125 South Road, Chapel Hill, North Carolina 27599-3290, United States
| |
Collapse
|
5
|
Zen F, Angione MD, Behan JA, Cullen RJ, Duff T, Vasconcelos JM, Scanlan EM, Colavita PE. Modulation of Protein Fouling and Interfacial Properties at Carbon Surfaces via Immobilization of Glycans Using Aryldiazonium Chemistry. Sci Rep 2016; 6:24840. [PMID: 27108562 PMCID: PMC4843010 DOI: 10.1038/srep24840] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 04/05/2016] [Indexed: 11/25/2022] Open
Abstract
Carbon materials and nanomaterials are of great interest for biological applications such as implantable devices and nanoparticle vectors, however, to realize their potential it is critical to control formation and composition of the protein corona in biological media. In this work, protein adsorption studies were carried out at carbon surfaces functionalized with aryldiazonium layers bearing mono- and di-saccharide glycosides. Surface IR reflectance absorption spectroscopy and quartz crystal microbalance were used to study adsorption of albumin, lysozyme and fibrinogen. Protein adsorption was found to decrease by 30–90% with respect to bare carbon surfaces; notably, enhanced rejection was observed in the case of the tested di-saccharide vs. simple mono-saccharides for near-physiological protein concentration values. ζ-potential measurements revealed that aryldiazonium chemistry results in the immobilization of phenylglycosides without a change in surface charge density, which is known to be important for protein adsorption. Multisolvent contact angle measurements were used to calculate surface free energy and acid-base polar components of bare and modified surfaces based on the van Oss-Chaudhury-Good model: results indicate that protein resistance in these phenylglycoside layers correlates positively with wetting behavior and Lewis basicity.
Collapse
Affiliation(s)
- Federico Zen
- School of Chemistry and Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, College Green, Dublin 2, Ireland
| | - M Daniela Angione
- School of Chemistry and Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, College Green, Dublin 2, Ireland
| | - James A Behan
- School of Chemistry and Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, College Green, Dublin 2, Ireland
| | - Ronan J Cullen
- School of Chemistry and Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, College Green, Dublin 2, Ireland
| | - Thomas Duff
- School of Chemistry and Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, College Green, Dublin 2, Ireland
| | - Joana M Vasconcelos
- School of Chemistry and Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, College Green, Dublin 2, Ireland
| | - Eoin M Scanlan
- School of Chemistry and Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, College Green, Dublin 2, Ireland
| | - Paula E Colavita
- School of Chemistry and Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, College Green, Dublin 2, Ireland
| |
Collapse
|