1
|
Maitz T, Shah S, Gupta R, Goel A, Sreenivasan J, Hajra A, Vyas AV, Lavie CJ, Hawwa N, Lanier GM, Kapur NK. Pathophysiology, diagnosis and management of right ventricular failure: A state of the art review of mechanical support devices. Prog Cardiovasc Dis 2024; 85:103-113. [PMID: 38944261 DOI: 10.1016/j.pcad.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
The function of the right ventricle (RV) is to drive the forward flow of blood to the pulmonary system for oxygenation before returning to the left ventricle. Due to the thin myocardium of the RV, its function is easily affected by decreased preload, contractile motion abnormalities, or increased afterload. While various etiologies can lead to changes in RV structure and function, sudden changes in RV afterload can cause acute RV failure which is associated with high mortality. Early detection and diagnosis of RV failure is imperative for guiding initial medical management. Echocardiographic findings of reduced tricuspid annular plane systolic excursion (<1.7) and RV wall motion (RV S' <10 cm/s) are quantitatively supportive of RV systolic dysfunction. Medical management commonly involves utilizing diuretics or fluids to optimize RV preload, while correcting the underlying insult to RV function. When medical management alone is insufficient, mechanical circulatory support (MCS) may be necessary. However, the utility of MCS for isolated RV failure remains poorly understood. This review outlines the differences in flow rates, effects on hemodynamics, and advantages/disadvantages of MCS devices such as intra-aortic balloon pump, Impella, centrifugal-flow right ventricular assist devices, extracorporeal membrane oxygenation, and includes a detailed review of the latest clinical trials and studies analyzing the effects of MCS devices in acute RV failure.
Collapse
Affiliation(s)
- Theresa Maitz
- Department of Medicine, Lehigh Valley Health Network, Allentown, PA, USA
| | - Swara Shah
- Department of Medicine, Lehigh Valley Health Network, Allentown, PA, USA
| | - Rahul Gupta
- Department of Cardiology, Lehigh Valley Heart Institute, Lehigh Valley Health Network, Allentown, PA, USA.
| | - Akshay Goel
- Department of Cardiology, Westchester Medical Center, Valhalla, NY, USA
| | | | - Adrija Hajra
- Department of Medicine, Jacobi Medical Center, Bronx, NY, USA
| | - Apurva V Vyas
- Department of Cardiology, Lehigh Valley Heart Institute, Lehigh Valley Health Network, Allentown, PA, USA
| | - Carl J Lavie
- John Ochsner Heart and Vascular Institute, Oshner Clinical School, The University of Queensland School of Medicine, New Orleans, LA, USA
| | - Nael Hawwa
- Department of Cardiology, Lehigh Valley Heart Institute, Lehigh Valley Health Network, Allentown, PA, USA
| | - Gregg M Lanier
- Department of Cardiology, Westchester Medical Center, Valhalla, NY, USA
| | - Navin K Kapur
- Cardiovascular Center, Tufts Medical Center, Boston, MA, USA
| |
Collapse
|
2
|
Yun Z, Yao J, Wang L, Tang X, Feng Y. The design and evaluation of the outflow structures of an interventional microaxial blood pump. Front Physiol 2023; 14:1169905. [PMID: 37250127 PMCID: PMC10213901 DOI: 10.3389/fphys.2023.1169905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/04/2023] [Indexed: 05/31/2023] Open
Abstract
Blood pump design efforts are focused on enhancing hydraulic effectiveness and minimizing shear stress. Unlike conventional blood pumps, interventional microaxial blood pumps have a unique outflow structure due to minimally invasive technology. The outflow structure, composed of the diffuser and cage bridges, is crucial in minimizing the pump size to provide adequate hemodynamic support. This study proposed four outflow structures of an interventional microaxial blood pump depending on whether the diffuser with or without blades and cage bridges were straight or curved. The outflow flow structure's effect on the blood pump's hydraulic performance and shear stress distribution was evaluated by computational fluid dynamics and hydraulic experiments. The results showed that all four outflow structures could achieve the pressure and flow requirements specified at the design point but with significant differences in shear stress distribution. Among them, the outflow structure with curved bridges would make the blood dispersed more evenly when flowing out of the pump, which could effectively reduce the shear stress at the cage bridges. The outflow structure with blades would aggravate the secondary flow at the leading edge of the impeller, increasing the risk of flow stagnation. The combination of curved bridges and the bladeless diffuser had a relatively better shear stress distribution, with the proportion of fluid exposed to low scalar shear stress (<50 Pa) and high scalar shear stress (>150 Pa) in the blood pump being 97.92% and 0.26%, respectively. It could be concluded that the outflow structure with curved bridges and bladeless diffuser exhibited relatively better shear stress distribution and a lower hemolysis index of 0.00648%, which could support continued research on optimizing the microaxial blood pumps.
Collapse
Affiliation(s)
- Zhong Yun
- *Correspondence: Zhong Yun, ; Jinfu Yao,
| | - Jinfu Yao
- *Correspondence: Zhong Yun, ; Jinfu Yao,
| | | | | | | |
Collapse
|
3
|
Du G, Zhang J, Liu J, Fan L. Case Report: Two Cases of Watershed Phenomenon in Mechanical Circulatory Support Devices: Computed Tomography Angiography Imaging and Literature Review. Front Cardiovasc Med 2022; 9:893355. [PMID: 35647037 PMCID: PMC9136032 DOI: 10.3389/fcvm.2022.893355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
Mechanical circulatory support (MCS) has become a processing technique used in end-stage heart failure (ESHF) because it can significantly improve survival and quality of life in patients with ESHF as either a transitional support therapy or a permanent replacement therapy before heart transplant. However, various potential complications associated with MCS need to be considered, especially aortic root thrombus formation. It’s critical to have an appropriate diagnosis of aortic root thrombus and “watershed” because the prognosis and treatment are different. Both “watershed” and aortic root thrombus formation can be characterized by computed tomography angiography. The CT manifestations of two patients who had MCS device implantation in our hospital (one with intra-aortic balloon pumps + extracorporeal membrane oxygenators, the other with left ventricular assist devices) were reported, and a literature review that recognized of “watershed” phenomenon in the aortic root was conducted.
Collapse
|
4
|
Elenkov M, Lukitsch B, Ecker P, Janeczek C, Harasek M, Gföhler M. Non-parametric dynamical estimation of blood flow rate, pressure difference and viscosity for a miniaturized blood pump. Int J Artif Organs 2021; 45:207-215. [PMID: 34399589 DOI: 10.1177/03913988211006720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Blood pumps are becoming increasingly important for medical devices. They are used to assist and control the blood flow and blood pressure in the patient's body. To accurately control blood pumps, information about important hydrodynamic parameters such as blood flow rate, pressure difference and viscosity is needed. These parameters are difficult to measure online. Therefore, an accurate estimation of these parameters is crucial for the effective operation of implantable blood pumps. In this study, in vitro tests with bovine blood were conducted to collect data about the non-linear dependency of blood flow rate, flow resistance (pressure difference) and whole blood viscosity on motor current and rotation speed of a prototype blood pump. Gaussian process regression models are then used to model the non-linear mappings from motor current and rotation speed to the hydrodynamic variables of interest. The performance of the estimation is evaluated for all three variables and shows very high accuracy. For blood flow rate - correlation coefficient (r2) = 1, root mean squared error (RMSE) = 0.31 ml min-1, maximal error (ERRmax) = 9.31 ml min-1; for pressure r2 = 1, RMSE = 0.09 mmHg, ERRmax = 8.34 mmHg; and for viscosity r2 = 1,RMSE = 0.09 mPa.s, ERRmax = 0.31 mPa⋅s. The current findings suggest that this method can be employed for highly accurate online estimation of essential hydrodynamic parameters for implantable blood pumps.
Collapse
Affiliation(s)
- Martin Elenkov
- Institute of Engineering Design and Product Development, TU Wien, Vienna, Wien, Austria
| | - Benjamin Lukitsch
- Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna, Wien, Austria
| | - Paul Ecker
- Institute of Engineering Design and Product Development, TU Wien, Vienna, Wien, Austria.,Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna, Wien, Austria
| | - Christoph Janeczek
- Institute of Engineering Design and Product Development, TU Wien, Vienna, Wien, Austria
| | - Michael Harasek
- Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna, Wien, Austria
| | - Margit Gföhler
- Institute of Engineering Design and Product Development, TU Wien, Vienna, Wien, Austria
| |
Collapse
|
5
|
Melton N, Soleimani B, Dowling R. Current Role of the Total Artificial Heart in the Management of Advanced Heart Failure. Curr Cardiol Rep 2019; 21:142. [DOI: 10.1007/s11886-019-1242-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|