1
|
Roy T, Lee HK, Capron CB, Lopez-Jimenez F, Hesley GK, Greenleaf JF, Urban MW, Guddati MN. Estimation of In Vivo Human Carotid Artery Elasticity Using Arterial Dispersion Ultrasound Vibrometry. ULTRASOUND IN MEDICINE & BIOLOGY 2025; 51:250-261. [PMID: 39472160 PMCID: PMC11663133 DOI: 10.1016/j.ultrasmedbio.2024.09.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/19/2024] [Accepted: 09/29/2024] [Indexed: 12/23/2024]
Abstract
OBJECTIVE Arterial stiffening serves as an early indicator for a variety of cardiovascular diseases. Arterial Dispersion Ultrasound Vibrometry (ADUV) is a method that leverages acoustic radiation force to stimulate arterial wall motion, assess wave propagation characteristics, and subsequently calculate the arterial shear modulus. Previously, we introduced an inversion technique based on a guided cylindrical wave model, which proved effective in rubber tube phantom experiments. In this study, we broaden the scope of our investigation from phantom experiments to in vivo examination of common carotid arteries in human subjects, identify the challenges, and provide solutions, leading to a systematic protocol for ADUV application and robust estimation of the elastic modulus of common carotid arteries. METHODS We achieve this by analyzing ADUV data from 59 subjects categorized as (a) confirmed atherosclerotic cardiovascular disease (n = 27), (b) with cardiovascular risk factors (n = 20), and (c) healthy (n = 12). A crucial aspect of this work is the development of metrics to differentiate high-quality ADUV data from unusable data. RESULTS AND CONCLUSIONS With the proposed metrics, in our cohort, we observed 82% of diameter data and 78% of motion data as usable data. Future work will involve applying this protocol to a larger cohort with subsequent statistical analysis to assess and validate the resulting biomarkers.
Collapse
Affiliation(s)
- Tuhin Roy
- Department of Civil Engineering, NC State University, Raleigh, NC, USA
| | - Hyoung-Ki Lee
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Charles B Capron
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, USA
| | | | - Gina K Hesley
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - James F Greenleaf
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Matthew W Urban
- Department of Radiology, Mayo Clinic, Rochester, MN, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Murthy N Guddati
- Department of Civil Engineering, NC State University, Raleigh, NC, USA.
| |
Collapse
|
2
|
Urban M, Vasconcelos L, Brom K, Dave J, Kijanka P. Shear wave elastography primer for the abdominal radiologist. Abdom Radiol (NY) 2025:10.1007/s00261-025-04806-1. [PMID: 39883164 DOI: 10.1007/s00261-025-04806-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 01/10/2025] [Accepted: 01/11/2025] [Indexed: 01/31/2025]
Abstract
PURPOSE Shear wave elastography (SWE) provides a means for adding information about the mechanical properties of tissues to a diagnostic ultrasound examination. It is important to understand the physics and methods by which the measurements are made to aid interpretation of the results as they relate to disease processes. METHODS The components of how ultrasound is used to generate shear waves and make measurements of the induced motion are reviewed. The physics of shear wave propagation are briefly described for elastic and viscoelastic tissues. Additionally, shear wave propagation in homogeneous and inhomogeneous cases is addressed. RESULTS SWE technology has been implemented by many clinical vendors with different capabilities. Various quality metrics are used to define valid measurements based on aspects of the shear wave signals or wave velocity estimates. CONCLUSION There are many uses for SWE in abdominal imaging, but it is important to understand how the measurements are performed to gauge their utility for diagnosis of different conditions. Continued efforts to make the technology robust in complex clinical situations are ongoing, but many applications actively benefit from added information about tissue mechanical properties for a more holistic view of the patient for diagnosis or assessment of prognosis and treatment management.
Collapse
|
3
|
Wang Y, Chen W, Wang Q. Segmental and transmural motion of the rat myocardium estimated using quantitative ultrasound with new strategies for infarct detection. Front Bioeng Biotechnol 2023; 11:1236108. [PMID: 37744251 PMCID: PMC10512837 DOI: 10.3389/fbioe.2023.1236108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/21/2023] [Indexed: 09/26/2023] Open
Abstract
Introduction: The estimation of myocardial motion abnormalities has great potential for the early diagnosis of myocardial infarction (MI). This study aims to quantitatively analyze the segmental and transmural myocardial motion in MI rats by incorporating two novel strategies of algorithm parameter optimization and transmural motion index (TMI) calculation. Methods: Twenty-one rats were randomly divided into three groups (n = 7 per group): sham, MI, and ischemia-reperfusion (IR) groups. Ultrasound radio-frequency (RF) signals were acquired from each rat heart at 1 day and 28 days after animal model establishment; thus, a total of six datasets were represented as Sham1, Sham28, MI1, MI28, IR1, and IR28. The systolic cumulative displacement was calculated using our previously proposed vectorized normalized cross-correlation (VNCC) method. A semiautomatic regional and layer-specific myocardium segmentation framework was proposed for transmural and segmental myocardial motion estimation. Two novel strategies were proposed: the displacement-compensated cross-correlation coefficient (DCCCC) for algorithm parameter optimization and the transmural motion index (TMI) for quantitative estimation of the cross-wall transmural motion gradient. Results: The results showed that an overlap value of 80% used in VNCC guaranteed a more accurate displacement calculation. Compared to the Sham1 group, the systolic myocardial motion reductions were significantly detected (p < 0.05) in the middle anteroseptal (M-ANT-SEP), basal anteroseptal (B-ANT-SEP), apical lateral (A-LAT), middle inferolateral (M-INF-LAT), and basal inferolateral (B-INF-LAT) walls as well as a significant TMI drop (p < 0.05) in the M-ANT-SEP wall in the MI1 rats; significant motion reductions (p < 0.05) were also detected in the B-ANT-SEP and A-LAT walls in the IR1 group. The motion improvements (p < 0.05) were detected in the M-INF-LAT wall in the MI28 group and the apical septal (A-SEP) wall in the IR28 group compared to the MI1 and IR1 groups, respectively. Discussion: Our results show that the MI-induced reductions and reperfusion-induced recovery in systolic myocardial contractility could be successfully evaluated using our method, and most post-MI myocardial segments could recover systolic function to various extents in the remodeling phase. In conclusion, the ultrasound-based quantitative estimation framework for estimating segmental and transmural motion of the myocardium proposed in our study has great potential for non-invasive, novel, and early MI detection.
Collapse
Affiliation(s)
- Yinong Wang
- School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, Guangdong, China
| | - Wufan Chen
- School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, Guangdong, China
| | - Qing Wang
- School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
4
|
Lee HK, Holmes PM, Greenleaf JF, Urban MW. Comb Detection for Measuring Shear Wave Propagation. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2023; 70:1135-1145. [PMID: 37471186 PMCID: PMC10529181 DOI: 10.1109/tuffc.2023.3297394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Plane wave compounding (PWC) is widely used to measure the propagation of shear waves. Implementing PWC on most commercial ultrasound scanners is challenging because all channel (>128) data must be processed or transferred to the host computing unit in real time. Comb detection transmits multiple focused beams simultaneously and results in a reduced number of receive lines to be processed in parallel. These comb beams are scanned laterally to acquire receive lines at different lateral positions in order to obtain data over a large region of interest (ROI). One of the potential issues with using multiple simultaneously transmitted beams is the issue of crosstalk between the beams. Crosstalk is analyzed through simulated beam patterns, simulated B-mode images, and motion data from shear wave elastography (SWE) experiments. Using a Hamming window on transmit and receive can suppress crosstalk to 1.2% root-mean-square error (RMSE, normalized RMSE to the peak magnitude of the reference signal) for shear wave motion signals. Four comb beams with three laterally scanned locations cover almost the entire field of view (FOV) and achieve the same frame rate as PWC with three angles. Phantom and in vivo studies demonstrate comparable motion data of comb detection to PWC in terms of motion signal quality and measured phase velocity. In addition, comb detection provides motion with lower noise and stronger signals than PWC, which is believed to be due to the advantages of transmitting focused beams rather than plane waves (PWs).
Collapse
|
5
|
Wang S, Hossack JA, Klibanov AL. From Anatomy to Functional and Molecular Biomarker Imaging and Therapy: Ultrasound Is Safe, Ultrafast, Portable, and Inexpensive. Invest Radiol 2020; 55:559-572. [PMID: 32776766 PMCID: PMC10290890 DOI: 10.1097/rli.0000000000000675] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Ultrasound is the most widely used medical imaging modality worldwide. It is abundant, extremely safe, portable, and inexpensive. In this review, we consider some of the current development trends for ultrasound imaging, which build upon its current strength and the popularity it experiences among medical imaging professional users.Ultrasound has rapidly expanded beyond traditional radiology departments and cardiology practices. Computing power and data processing capabilities of commonly available electronics put ultrasound systems in a lab coat pocket or on a user's mobile phone. Taking advantage of new contributions and discoveries in ultrasound physics, signal processing algorithms, and electronics, the performance of ultrasound systems and transducers have progressed in terms of them becoming smaller, with higher imaging performance, and having lower cost. Ultrasound operates in real time, now at ultrafast speeds; kilohertz frame rates are already achieved by many systems.Ultrasound has progressed beyond anatomical imaging and monitoring blood flow in large vessels. With clinical approval of ultrasound contrast agents (gas-filled microbubbles) that are administered in the bloodstream, tissue perfusion studies are now routine. Through the use of modern ultrasound pulse sequences, individual microbubbles, with subpicogram mass, can be detected and observed in real time, many centimeters deep in the body. Ultrasound imaging has broken the wavelength barrier; by tracking positions of microbubbles within the vasculature, superresolution imaging has been made possible. Ultrasound can now trace the smallest vessels and capillaries, and obtain blood velocity data in those vessels.Molecular ultrasound imaging has now moved closer to clinic; the use of microbubbles with a specific affinity to endothelial biomarkers allows selective accumulation and retention of ultrasound contrast in the areas of ischemic injury, inflammation, or neoangiogenesis. This will aid in noninvasive molecular imaging and may provide additional help with real-time guidance of biopsy, surgery, and ablation procedures.The ultrasound field can be tightly focused inside the body, many centimeters deep, with millimeter precision, and ablate lesions by energy deposition, with thermal or mechanical bioeffects. Some of such treatments are already in clinical use, with more indications progressing through the clinical trial stage. In conjunction with intravascular microbubbles, focused ultrasound can be used for tissue-specific drug delivery; localized triggered release of sequestered drugs from particles in the bloodstream may take time to get to clinic. A combination of intravascular microbubbles with circulating drug and low-power ultrasound allows transient opening of vascular endothelial barriers, including blood-brain barrier; this approach has reached clinical trial stage. Therefore, the drugs that normally would not be getting to the target tissue in the brain will now have an opportunity to produce therapeutic efficacy.Overall, medical ultrasound is developing at a brisk rate, even in an environment where other imaging modalities are also advancing rapidly and may be considered more lucrative. With all the current advances that we discuss, and many more to come, ultrasound may help solve many problems that modern medicine is facing.
Collapse
|
6
|
Kvale KF, Bersvendsen J, Remme EW, Salles S, Aalen JM, Brekke PH, Edvardsen T, Samset E. Detection of Regional Mechanical Activation of the Left Ventricular Myocardium Using High Frame Rate Ultrasound Imaging. IEEE TRANSACTIONS ON MEDICAL IMAGING 2019; 38:2665-2675. [PMID: 30969919 DOI: 10.1109/tmi.2019.2909358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We have investigated the feasibility of noninvasive mapping of mechanical activation patterns in the left ventricular (LV) myocardium using high frame rate ultrasound imaging for the purpose of detecting conduction abnormalities. Five anesthetized, open-chest dogs with implanted combined sonomicrometry and electromyography (EMG) crystals were studied. The animals were paced from the specified locations of the heart, while crystal and ultrasound data were acquired. Isochrone maps of the mechanical activation patterns were generated from the ultrasound data using a novel signal processing method called clutter filter wave imaging (CFWI). The isochrone maps showed the same mechanical activation pattern as the sonomicrometry crystals in 90% of the cases. For electrical activation, the activation sequences from ultrasound were the same in 92% of the cases. The coefficient of determination between the activation delay measured with EMG and ultrasound was R 2 = 0.79 , indicating a strong correlation. These results indicate that high frame rate ultrasound imaging processed with CFWI has the potential to be a valuable tool for mechanical activation detection.
Collapse
|
7
|
Nenadic IZ, Urban MW, Pislaru C, Escobar D, Vasconcelos L, Greenleaf JF. In Vivo Open- and Closed-chest Measurements of Left-Ventricular Myocardial Viscoelasticity using Lamb wave Dispersion Ultrasound Vibrometry (LDUV): A Feasibility Study. Biomed Phys Eng Express 2018; 4. [PMID: 30455983 DOI: 10.1088/2057-1976/aabe41] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Diastolic dysfunction causes close to half of congestive heart failures and is associated with increased stiffness in left-ventricular myocardium. A clinical tool capable of measuring viscoelasticity of the myocardium could be beneficial in clinical settings. We used Lamb wave Dispersion Ultrasound Vibrometry (LDUV) for assessing the feasibility of making in vivo non-invasive measurements of myocardial elasticity and viscosity in pigs. In vivo open-chest measurements of myocardial elasticity and viscosity obtained using a Fourier space based analysis of Lamb wave dispersion are reported. The approach was used to perform ECG-gated transthoracic in vivo measurements of group velocity, elasticity and viscosity throughout a single heart cycle. Group velocity, elasticity and viscosity in the frequency range 50-500 Hz increased from diastole to systole, consistent with contraction and relaxation of the myocardium. Systolic group velocity, elasticity and viscosity were 5.0 m/s, 19.1 kPa, 6.8 Pa·s, respectively. In diastole, the measured group velocity, elasticity and viscosity were 1.5 m/s, 5.1 kPa and 3.2 Pa·s, respectively.
Collapse
Affiliation(s)
- Ivan Z Nenadic
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 1 Street SW, Rochester, MN, 55905, USA
| | - Matthew W Urban
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 1 Street SW, Rochester, MN, 55905, USA.,Department of Radiology, Mayo Clinic, 200 1 Street SW, Rochester, MN, 55905, USA
| | - Cristina Pislaru
- Division of Cardiovascular Diseases, Mayo Clinic, 200 1 Street SW, Rochester, MN, 55905, USA
| | - Daniel Escobar
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 1 Street SW, Rochester, MN, 55905, USA
| | - Luiz Vasconcelos
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 1 Street SW, Rochester, MN, 55905, USA
| | - James F Greenleaf
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 1 Street SW, Rochester, MN, 55905, USA
| |
Collapse
|
8
|
Urban M. Current and Future Clinical Applications of Elasticity Imaging Techniques. ULTRASOUND ELASTOGRAPHY FOR BIOMEDICAL APPLICATIONS AND MEDICINE 2018:471-491. [DOI: 10.1002/9781119021520.ch30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
9
|
Chen Y, D'hooge J, Luo J. Doppler-Based Motion Compensation Strategies for 3-D Diverging Wave Compounding and Multiplane-Transmit Beamforming: A Simulation Study. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2018; 65:1631-1642. [PMID: 29994703 DOI: 10.1109/tuffc.2018.2851310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Fast imaging of the heart has shown promise toward bringing new diagnostic information. Although most studies to date have been based on 2-D imaging technology, the ultimate diagnostic tool would enable fast 3-D echocardiography. Hereto, 3-D diverging wave compounding (DWC) and 3-D multiline-transmit (MLT) beamforming have recently been proposed. Moreover, in our recent study, a hybrid technique was proposed in which multiple planar diverging waves were transmitted [i.e., multiplane-transmit (MPT)]. The proposed 3MPT sequence was demonstrated to outperform $9 \times 9$ DWC and 16MLT-4MLA (i.e., multiline acquisition) while imaging moving targets. However, none of the investigated beamforming techniques made use of motion compensation (MoCo) strategies. In this paper, we therefore propose Doppler-based MoCo strategies for 3-D DWC and MPT and test them via computer simulations. It is demonstrated that the MoCo strategies proposed for both DWC and MPT are effective and significantly restore image quality. Moreover, the MPT beamforming with MoCo outperforms $9 \times 9$ DWC with MoCo in terms of contrast ratio and contrast-to-noise ratio. The proposed MPT beamforming with MoCo thus provides volumetric images with relatively high temporal resolution (~66 Hz) and high image quality that is minimally affected by motion artifacts.
Collapse
|
10
|
Papadacci C, Mirault T, Dizier B, Tanter M, Messas E, Pernot M. Non-invasive Evaluation of Aortic Stiffness Dependence with Aortic Blood Pressure and Internal Radius by Shear Wave Elastography and Ultrafast Imaging. Ing Rech Biomed 2018. [DOI: 10.1016/j.irbm.2017.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Petterson NJ, Fixsen LS, Rutten MCM, Pijls NHJ, van de Vosse FN, Lopata RGP. Ultrasound functional imaging in an ex vivo beating porcine heart platform. Phys Med Biol 2017; 62:9112-9126. [PMID: 29053103 DOI: 10.1088/1361-6560/aa9515] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In recent years, novel ultrasound functional imaging (UFI) techniques have been introduced to assess cardiac function by measuring, e.g. cardiac output (CO) and/or myocardial strain. Verification and reproducibility assessment in a realistic setting remain major issues. Simulations and phantoms are often unrealistic, whereas in vivo measurements often lack crucial hemodynamic parameters or ground truth data, or suffer from the large physiological and clinical variation between patients when attempting clinical validation. Controlled validation in certain pathologies is cumbersome and often requires the use of lab animals. In this study, an isolated beating pig heart setup was adapted and used for performance assessment of UFI techniques such as volume assessment and ultrasound strain imaging. The potential of performing verification and reproducibility studies was demonstrated. For proof-of-principle, validation of UFI in pathological hearts was examined. Ex vivo porcine hearts (n = 6, slaughterhouse waste) were resuscitated and attached to a mock circulatory system. Radio frequency ultrasound data of the left ventricle were acquired in five short axis views and one long axis view. Based on these slices, the CO was measured, where verification was performed using flow sensor measurements in the aorta. Strain imaging was performed providing radial, circumferential and longitudinal strain to assess reproducibility and inter-subject variability under steady conditions. Finally, strains in healthy hearts were compared to a heart with an implanted left ventricular assist device, simulating a failing, supported heart. Good agreement between ultrasound and flow sensor based CO measurements was found. Strains were highly reproducible (intraclass correlation coefficients >0.8). Differences were found due to biological variation and condition of the hearts. Strain magnitude and patterns in the assisted heart were available for different pump action, revealing large changes compared to the normal condition. The setup provides a valuable benchmarking platform for UFI techniques. Future studies will include work on different pathologies and other means of measurement verification.
Collapse
Affiliation(s)
- Niels J Petterson
- Cardiovascular Biomechanics group, Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, GEM-Z4.131, 5600 MB Eindhoven, Netherlands
| | | | | | | | | | | |
Collapse
|
12
|
Schaafs LA, Tzschätzsch H, van der Giet M, Reshetnik A, Steffen IG, Hamm B, Braun J, Sack I, Elgeti T. Time-Harmonic Ultrasound elastography of the Descending Abdominal Aorta: Initial Results. ULTRASOUND IN MEDICINE & BIOLOGY 2017; 43:2550-2557. [PMID: 28818306 DOI: 10.1016/j.ultrasmedbio.2017.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 06/28/2017] [Accepted: 07/07/2017] [Indexed: 06/07/2023]
Abstract
Stiffening of central large vessels is considered a key pathophysiologic factor within the cardiovascular system. Current diagnostic parameters such as pulse wave velocity (PWV) indirectly measure aortic stiffness, a hallmark of coronary diseases. The aim of the present study was to perform elastography of the proximal abdominal aorta based on externally induced time-harmonic shear waves. Experiments were performed in 30 healthy volunteers (25 young, 5 old, >50 y) and 5 patients with longstanding hypertension (PWV >10 m/s). B-Mode-guided sonographic time-harmonic elastography was used for measurement of externally induced shear waves at 30-Hz vibration frequency. Thirty-hertz shear wave amplitudes (SWAs) within the abdominal aorta were measured and displayed in real time and processed offline for differences in SWA between systole and diastole (ΔSWA). Data were analyzed using the Kruskal-Wallis test and receiver operating characteristic curve analysis. The change in SWA over the cardiac cycle was reduced significantly in all patients as assessed with ΔSWA (volunteers: mean = 10 ± 5 μm, patients: mean = 4 ± 1 μm; p < 0.001). The best separation of healthy volunteers from patients was obtained with a ΔSWA threshold of 4.7 μm, resulting in a sensitivity of 0.9 and a specificity of 1.0, with an overall area under the curve of 0.96. Time harmonic elastography of the abdominal aorta is feasible and shows promise for the exploitation of time-varying shear wave amplitudes as a diagnostic marker for aortic wall stiffening. Patients with elevated PWVs suggesting increased aortic wall stiffness were best identified by ΔSWA-a parameter that could be related to the ability of the vessel walls to distend on passages of the pulse wave.
Collapse
Affiliation(s)
- Lars-Arne Schaafs
- Klinik und Hochschulambulanz für Radiologie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Heiko Tzschätzsch
- Klinik und Hochschulambulanz für Radiologie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Markus van der Giet
- Medizinische Klinik mit Schwerpunkt Nephrologie, Transplantationszentrum-Hypertoniezentrum, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Alexander Reshetnik
- Medizinische Klinik mit Schwerpunkt Nephrologie, Transplantationszentrum-Hypertoniezentrum, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Ingo G Steffen
- Klinik und Hochschulambulanz für Radiologie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Bernd Hamm
- Klinik und Hochschulambulanz für Radiologie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Jürgen Braun
- Institut für Medizinische Informatik, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Ingolf Sack
- Klinik und Hochschulambulanz für Radiologie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Thomas Elgeti
- Klinik und Hochschulambulanz für Radiologie, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
13
|
Liu Z, Huang C, Luo J. A Systematic Investigation of Lateral Estimation Using Various Interpolation Approaches in Conventional Ultrasound Imaging. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2017; 64:1149-1160. [PMID: 28534769 DOI: 10.1109/tuffc.2017.2705186] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Accurate lateral displacement and strain estimation is critical for some applications of elasticity imaging. Typically, motion estimation in the lateral direction is challenging because of low sampling frequency and lack of phase information in conventional ultrasound imaging. Several approaches have been proposed to improve the performance of lateral estimation, such as lateral interpolation on the radio frequency (RF) signals (Interp_RF), lateral interpolation on the cross-correlation function (Interp_CCF), and lateral interpolation on both the RF signals and cross-correlation function (Interp_Both). In this paper, the estimation performances of the above-mentioned three approaches are compared systematically in simulations and phantom experiments. In the simulations, the root-mean-square error (RMSE) of axial/lateral displacement and strain is utilized to assess the accuracy of motion estimation. In the phantom experiments, the displacement quality metric (DQM), defined as the normalized cross-correlation between the motion-compensated reference frame and the comparison frame, and the contrast-to-noise ratio (CNR) of axial/lateral strain are used as the evaluation criteria. The results show that the three approaches have similar performance in axial estimation. For lateral estimation, if the line density of ultrasound imaging is relatively high (i.e., >4.2 lines/mm), Interp_CCF is comparable to Interp_Both, and Interp_RF performs the worst. However, if the line density is relatively low (i.e., <2.8 lines/mm), Interp_Both performs the best as indicated by the lowest RMSEs or highest DQMs and CNRs in lateral estimation. The trend is consistent at different window sizes, applied strains, and sonographic signal-to-noise ratios (>20 dB). Besides, Interp_Both with a small interpolation factor (e.g., 3-5) is found to obtain the best tradeoff between the estimation accuracy and the computational cost, and thus is suggested for lateral motion estimation in the case of a low line density (i.e., <2.8 lines/mm).
Collapse
|
14
|
Strachinaru M, Bosch JG, van Dalen BM, van Gils L, van der Steen AFW, de Jong N, Geleijnse ML, Vos HJ. Cardiac Shear Wave Elastography Using a Clinical Ultrasound System. ULTRASOUND IN MEDICINE & BIOLOGY 2017; 43:1596-1606. [PMID: 28545859 DOI: 10.1016/j.ultrasmedbio.2017.04.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 03/08/2017] [Accepted: 04/14/2017] [Indexed: 06/07/2023]
Abstract
The propagation velocity of shear waves relates to tissue stiffness. We prove that a regular clinical cardiac ultrasound system can determine shear wave velocity with a conventional unmodified tissue Doppler imaging (TDI) application. The investigation was performed on five tissue phantoms with different stiffness using a research platform capable of inducing and tracking shear waves and a clinical cardiac system (Philips iE33, achieving frame rates of 400-700 Hz in TDI by tuning the normal system settings). We also tested the technique in vivo on a normal individual and on typical pathologies modifying the consistency of the left ventricular wall. The research platform scanner was used as reference. Shear wave velocities measured with TDI on the clinical cardiac system were very close to those measured by the research platform scanner. The mean difference between the clinical and research systems was 0.18 ± 0.22 m/s, and the limits of agreement, from -0.27 to +0.63 m/s. In vivo, the velocity of the wave induced by aortic valve closure in the interventricular septum increased in patients with expected increased wall stiffness.
Collapse
Affiliation(s)
- Mihai Strachinaru
- Department of Cardiology, Erasmus MC Rotterdam, Rotterdam, The Netherlands.
| | - Johan G Bosch
- Department of Biomedical Engineering, Erasmus MC Rotterdam, Rotterdam, The Netherlands
| | - Bas M van Dalen
- Department of Cardiology, Erasmus MC Rotterdam, Rotterdam, The Netherlands
| | - Lennart van Gils
- Department of Cardiology, Erasmus MC Rotterdam, Rotterdam, The Netherlands
| | - Antonius F W van der Steen
- Department of Biomedical Engineering, Erasmus MC Rotterdam, Rotterdam, The Netherlands; Department of Acoustical Wavefield Imaging, Delft University of Technology, Delft, The Netherlands
| | - Nico de Jong
- Department of Biomedical Engineering, Erasmus MC Rotterdam, Rotterdam, The Netherlands; Department of Acoustical Wavefield Imaging, Delft University of Technology, Delft, The Netherlands
| | - Marcel L Geleijnse
- Department of Cardiology, Erasmus MC Rotterdam, Rotterdam, The Netherlands
| | - Hendrik J Vos
- Department of Biomedical Engineering, Erasmus MC Rotterdam, Rotterdam, The Netherlands; Department of Acoustical Wavefield Imaging, Delft University of Technology, Delft, The Netherlands
| |
Collapse
|
15
|
de Korte CL, Fekkes S, Nederveen AJ, Manniesing R, Hansen HRHG. Review: Mechanical Characterization of Carotid Arteries and Atherosclerotic Plaques. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2016; 63:1613-1623. [PMID: 27249826 DOI: 10.1109/tuffc.2016.2572260] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Cardiovascular disease (CVD) is a leading cause of death and is in the majority of cases due to the formation of atherosclerotic plaques in arteries. Initially, thickening of the inner layer of the arterial wall occurs. Continuation of this process leads to plaque formation. The risk of a plaque to rupture and thus to induce an ischemic event is directly related to its composition. Consequently, characterization of the plaque composition and its proneness to rupture are of crucial importance for risk assessment and treatment strategies. The carotid is an excellent artery to be imaged with ultrasound because of its superficial position. In this review, ultrasound-based methods for characterizing the mechanical properties of the carotid wall and atherosclerotic plaque are discussed. Using conventional echography, the intima media thickness (IMT) can be quantified. There is a wealth of studies describing the relation between IMT and the risk for myocardial infarction and stroke. Also the carotid distensibility can be quantified with ultrasound, providing a surrogate marker for the cross-sectional mechanical properties. Although all these parameters are associated with CVD, they do not easily translate to individual patient risk. Another technique is pulse wave velocity (PWV) assessment, which measures the propagation of the pressure pulse over the arterial bed. PWV has proven to be a marker for global arterial stiffness. Recently, an ultrasound-based method to estimate the local PWV has been introduced, but the clinical effectiveness still needs to be established. Other techniques focus on characterization of plaques. With ultrasound elastography, the strain in the plaque due to the pulsatile pressure can be quantified. This technique was initially developed using intravascular catheters to image coronaries, but recently noninvasive methods were successfully developed. A high correlation between the measured strain and the risk for rupture was established. Acoustic radiation force impulse (ARFI) imaging also provides characterization of local plaque components based on mechanical properties. However, both elastography and ARFI provide an indirect measure of the elastic modulus of tissue. With shear wave imaging, the elastic modulus can be quantified, although the carotid artery is one of the most challenging tissues for this technique due to its size and geometry. Prospective studies still have to establish the predictive value of these techniques for the individual patient. Validation of ultrasound-based mechanical characterization of arteries and plaques remains challenging. Magnetic resonance imaging is often used as the "gold" standard for plaque characterization, but its limited resolution renders only global characterization of the plaque. CT provides information on the vascular tree, the degree of stenosis, and the presence of calcified plaque, while soft plaque characterization remains limited. Histology still is the gold standard, but is available only if tissue is excised. In conclusion, elastographic ultrasound techniques are well suited to characterize the different stages of vascular disease.
Collapse
|
16
|
Noninvasive measurement of regional pulse wave velocity in human ascending aorta with ultrasound imaging. J Hypertens 2016; 34:2026-37. [DOI: 10.1097/hjh.0000000000001060] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Huang C, Su Y, Zhang H, Qian LX, Luo J. Comparison of Different Pulse Waveforms for Local Pulse Wave Velocity Measurement in Healthy and Hypertensive Common Carotid Arteries in Vivo. ULTRASOUND IN MEDICINE & BIOLOGY 2016; 42:1111-1123. [PMID: 26924694 DOI: 10.1016/j.ultrasmedbio.2015.12.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 12/12/2015] [Accepted: 12/28/2015] [Indexed: 06/05/2023]
Abstract
Pulse wave velocity (PWV), a measurement of arterial stiffness, can be estimated locally by determining the time delay of the pulse waveforms for a known distance as measured in an ultrasound image. Our aim was to compare three ultrasound-based methods for estimation of local PWV based on the measurement of diameter distension waveforms, displacement waveforms of the anterior wall and displacement waveforms of the posterior wall, respectively, in human common carotid arteries in vivo. The local PWVs at both systolic foot (PWVsf) and dicrotic notch (PWVdn) were estimated from ultrasound radiofrequency data of 25 healthy and 24 hypertensive patients for each method. PWV estimation using the distension waveform method was found to have the highest precision in both groups. Both PWVsf and PWVdn were significantly higher in the hypertensive group compared with the healthy group using the distension waveform method (PWVsf: 6.08 ± 1.70 m/s vs. 4.75 ± 0.92 m/s, p = 0.000014; PWVdn: 7.83 ± 2.26 m/s vs. 5.21 ± 0.95 m/s, p < 0.000001), whereas there was no significant difference at a significance level of 0.01 between the two groups when the anterior or posterior wall waveform method was used. Thus, the difference in arterial stiffness between the two groups could be discriminated well by the distension waveform method. The local PWV estimated using distension waveforms might be a promising index for arterial stiffness characterization and hypertension management.
Collapse
Affiliation(s)
- Chengwu Huang
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China; Center for Biomedical Imaging Research, Tsinghua University, Beijing, China
| | - Yuan Su
- Department of Ultrasound, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Hong Zhang
- Department of Ultrasound, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Lin-Xue Qian
- Department of Ultrasound, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jianwen Luo
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China; Center for Biomedical Imaging Research, Tsinghua University, Beijing, China.
| |
Collapse
|
18
|
Sirevaag EJ, Casaccia S, Richter EA, O'Sullivan JA, Scalise L, Rohrbaugh JW. Cardiorespiratory interactions: Noncontact assessment using laser Doppler vibrometry. Psychophysiology 2016; 53:847-67. [PMID: 26970208 DOI: 10.1111/psyp.12638] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 01/17/2016] [Indexed: 01/02/2023]
Abstract
The application of a noncontact physiological recording technique, based on the method of laser Doppler vibrometry (LDV), is described. The effectiveness of the LDV method as a physiological recording modality lies in the ability to detect very small movements of the skin, associated with internal mechanophysiological activities. The method is validated for a range of cardiovascular variables, extracted from the contour of the carotid pulse waveform as a function of phase of the respiration cycle. Data were obtained from 32 young healthy participants, while resting and breathing spontaneously. Individual beats were assigned to four segments, corresponding with inspiration and expiration peaks and transitional periods. Measures relating to cardiac and vascular dynamics are shown to agree with the pattern of effects seen in the substantial body of literature based on human and animal experiments, and with selected signals recorded simultaneously with conventional sensors. These effects include changes in heart rate, systolic time intervals, and stroke volume. There was also some evidence for vascular adjustments over the respiration cycle. The effectiveness of custom algorithmic approaches for extracting the key signal features was confirmed. The advantages of the LDV method are discussed in terms of the metrological properties and utility in psychophysiological research. Although used here within a suite of conventional sensors and electrodes, the LDV method can be used on a stand-alone, noncontact basis, with no requirement for skin preparation, and can be used in harsh environments including the MR scanner.
Collapse
Affiliation(s)
- Erik J Sirevaag
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Sara Casaccia
- Preston M. Green Department of Electrical and Systems Engineering, School of Engineering, Washington University in St. Louis, St. Louis, Missouri, USA.,Department of Industrial Engineering and Mathematical Science, Università Politecnica delle Marche, Ancona, Italy
| | - Edward A Richter
- Preston M. Green Department of Electrical and Systems Engineering, School of Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Joseph A O'Sullivan
- Preston M. Green Department of Electrical and Systems Engineering, School of Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Lorenzo Scalise
- Department of Industrial Engineering and Mathematical Science, Università Politecnica delle Marche, Ancona, Italy
| | - John W Rohrbaugh
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
19
|
Dutta P, Urban MW, Le Maître OP, Greenleaf JF, Aquino W. Simultaneous identification of elastic properties, thickness, and diameter of arteries excited with ultrasound radiation force. Phys Med Biol 2015; 60:5279-96. [PMID: 26109582 PMCID: PMC4520308 DOI: 10.1088/0031-9155/60/13/5279] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The elastic and geometric properties of arteries have been long recognized as important predictors of cardiovascular disease. This work presents a robust technique for the noninvasive characterization of anisotropic elastic properties as well as thickness and diameter in arterial vessels. In our approach, guided waves are excited along arteries using the radiation force of ultrasound. Group velocity is used as the quantity of interest to reconstruct elastic and geometric features of the vessels. One of the main contributions of this work is a systematic approach based on sparse-grid collocation interpolation to construct surrogate models of arteries. These surrogate models are in turn used with direct-search optimization techniques to produce fast and accurate estimates of elastic properties, diameter, and thickness. One of the attractive features of the proposed approach is that once a surrogate model is built, it can be used for near real-time identification across many different types of arteries. We demonstrate the feasibility of the method using simulated and in vitro laboratory experiments on a silicon rubber tube and a porcine carotid artery. Our results show that using our proposed method, we can reliably identify the longitudinal modulus, thickness, and diameter of arteries. The circumferential modulus was found to have little influence in the group velocity, which renders the former quantity unidentifiable using the current experimental setting. Future work will consider the measurement of circumferential waves with the objective of improving the identifiability of the circumferential modulus.
Collapse
Affiliation(s)
- Parikshit Dutta
- Department of Civil and Environmental Engineering, Duke University, 121 Hudson Hall, Durham, NC, 27708, USA
| | | | | | | | | |
Collapse
|
20
|
Provost J, Papadacci C, Arango JE, Imbault M, Fink M, Gennisson JL, Tanter M, Pernot M. 3D ultrafast ultrasound imaging in vivo. Phys Med Biol 2014; 59:L1-L13. [PMID: 25207828 DOI: 10.1088/0031-9155/59/19/l1] [Citation(s) in RCA: 181] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Very high frame rate ultrasound imaging has recently allowed for the extension of the applications of echography to new fields of study such as the functional imaging of the brain, cardiac electrophysiology, and the quantitative imaging of the intrinsic mechanical properties of tumors, to name a few, non-invasively and in real time. In this study, we present the first implementation of Ultrafast Ultrasound Imaging in 3D based on the use of either diverging or plane waves emanating from a sparse virtual array located behind the probe. It achieves high contrast and resolution while maintaining imaging rates of thousands of volumes per second. A customized portable ultrasound system was developed to sample 1024 independent channels and to drive a 32 × 32 matrix-array probe. Its ability to track in 3D transient phenomena occurring in the millisecond range within a single ultrafast acquisition was demonstrated for 3D Shear-Wave Imaging, 3D Ultrafast Doppler Imaging, and, finally, 3D Ultrafast combined Tissue and Flow Doppler Imaging. The propagation of shear waves was tracked in a phantom and used to characterize its stiffness. 3D Ultrafast Doppler was used to obtain 3D maps of Pulsed Doppler, Color Doppler, and Power Doppler quantities in a single acquisition and revealed, at thousands of volumes per second, the complex 3D flow patterns occurring in the ventricles of the human heart during an entire cardiac cycle, as well as the 3D in vivo interaction of blood flow and wall motion during the pulse wave in the carotid at the bifurcation. This study demonstrates the potential of 3D Ultrafast Ultrasound Imaging for the 3D mapping of stiffness, tissue motion, and flow in humans in vivo and promises new clinical applications of ultrasound with reduced intra--and inter-observer variability.
Collapse
|
21
|
Compas CB, Wong EY, Huang X, Sampath S, Lin BA, Pal P, Papademetris X, Thiele K, Dione DP, Stacy M, Staib LH, Sinusas AJ, O'Donnell M, Duncan JS. Radial basis functions for combining shape and speckle tracking in 4D echocardiography. IEEE TRANSACTIONS ON MEDICAL IMAGING 2014; 33:1275-89. [PMID: 24893257 PMCID: PMC4283552 DOI: 10.1109/tmi.2014.2308894] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Quantitative analysis of left ventricular deformation can provide valuable information about the extent of disease as well as the efficacy of treatment. In this work, we develop an adaptive multi-level compactly supported radial basis approach for deformation analysis in 3D+time echocardiography. Our method combines displacement information from shape tracking of myocardial boundaries (derived from B-mode data) with mid-wall displacements from radio-frequency-based ultrasound speckle tracking. We evaluate our methods on open-chest canines (N=8) and show that our combined approach is better correlated to magnetic resonance tagging-derived strains than either individual method. We also are able to identify regions of myocardial infarction (confirmed by postmortem analysis) using radial strain values obtained with our approach.
Collapse
Affiliation(s)
| | - Emily Y. Wong
- Department of Bioengineering, University of Washington, Seattle, WA 98015 USA
| | - Xiaojie Huang
- Department of Electrical Engineering, Yale University, New Haven, CT 06520 USA
| | - Smita Sampath
- Department of Diagnostic Radiology, Yale University, New Haven, CT 06520 USA
| | - Ben A. Lin
- Department of Internal Medicine, Yale University, New Haven, CT 06520 USA
| | - Prasanta Pal
- Department of Diagnostic Radiology, Yale University, New Haven, CT 06520 USA
| | - Xenophon Papademetris
- Departments of Diagnostic Radiology and Biomedical Engineering, Yale University, New Haven, CT 06520 USA
| | - Karl Thiele
- Philips Medical Systems, Andover, MA 01810 USA
| | - Donald P. Dione
- Department of Internal Medicine, Yale University, New Haven, CT 06520 USA
| | - Mitchel Stacy
- Department of Internal Medicine, Yale University, New Haven, CT 06520 USA
| | - Lawrence H. Staib
- Departments of Diagnostic Radiology, Electrical Engineering, and Biomedical Engineering, Yale University, New Haven, CT 06520 USA
| | - Albert J. Sinusas
- Departments of Internal Medicine and Diagnostic Radiology, Yale University, New Haven, CT 06520 USA
| | - Matthew O'Donnell
- Department of Bioengineering, University of Washington, Seattle, WA 98015 USA
| | - James S. Duncan
- Departments of Diagnostic Radiology, Electrical Engineering, and Biomedical Engineering, Yale University, New Haven, CT 06520 USA
| |
Collapse
|
22
|
Cloonan AJ, Shahmirzadi D, Li RX, Doyle BJ, Konofagou EE, McGloughlin TM. 3D-Printed Tissue-Mimicking Phantoms for Medical Imaging and Computational Validation Applications. 3D PRINTING AND ADDITIVE MANUFACTURING 2014; 1:14-23. [PMID: 28804733 PMCID: PMC4981152 DOI: 10.1089/3dp.2013.0010] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Abdominal aortic aneurysm (AAA) is a permanent, irreversible dilation of the distal region of the aorta. Recent efforts have focused on improved AAA screening and biomechanics-based failure prediction. Idealized and patient-specific AAA phantoms are often employed to validate numerical models and imaging modalities. To produce such phantoms, the investment casting process is frequently used, reconstructing the 3D vessel geometry from computed tomography patient scans. In this study the alternative use of 3D printing to produce phantoms is investigated. The mechanical properties of flexible 3D-printed materials are benchmarked against proven elastomers. We demonstrate the utility of this process with particular application to the emerging imaging modality of ultrasound-based pulse wave imaging, a noninvasive diagnostic methodology being developed to obtain regional vascular wall stiffness properties, differentiating normal and pathologic tissue in vivo. Phantom wall displacements under pulsatile loading conditions were observed, showing good correlation to fluid-structure interaction simulations and regions of peak wall stress predicted by finite element analysis. 3D-printed phantoms show a strong potential to improve medical imaging and computational analysis, potentially helping bridge the gap between experimental and clinical diagnostic tools.
Collapse
Affiliation(s)
- Aidan J. Cloonan
- Centre for Applied Biomedical Engineering Research, Department of Mechanical, Aeronautical and Biomedical Engineering, University of Limerick, Limerick, Ireland
- Irish Centre for Composites Research, Materials and Surface Science Institute, University of Limerick, Limerick, Ireland
- Materials and Surface Science Institute, University of Limerick, Limerick, Ireland
| | - Danial Shahmirzadi
- Ultrasound and Elasticity Imaging Laboratory, Department of Biomedical Engineering, Columbia University, New York, New York
- Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, New Jersey
| | - Ronny X. Li
- Ultrasound and Elasticity Imaging Laboratory, Department of Biomedical Engineering, Columbia University, New York, New York
| | - Barry J. Doyle
- Intelligent Systems for Medicine Laboratory, School of Mechanical and Chemical Engineering, University of Western Australia, Perth, Australia
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Elisa E. Konofagou
- Ultrasound and Elasticity Imaging Laboratory, Department of Biomedical Engineering, Columbia University, New York, New York
- Department of Radiology, Columbia University, New York, New York
| | - Tim M. McGloughlin
- Centre for Applied Biomedical Engineering Research, Department of Mechanical, Aeronautical and Biomedical Engineering, University of Limerick, Limerick, Ireland
- Materials and Surface Science Institute, University of Limerick, Limerick, Ireland
- Department of Biomedical Engineering, Khalifa University of Science, Technology & Research, Abu Dhabi, United Arab Emirates
| |
Collapse
|
23
|
Tanter M, Fink M. Ultrafast imaging in biomedical ultrasound. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2014. [PMID: 24402899 DOI: 10.1109/tuffc.2014.2882] [Citation(s) in RCA: 358] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Although the use of ultrasonic plane-wave transmissions rather than line-per-line focused beam transmissions has been long studied in research, clinical application of this technology was only recently made possible through developments in graphical processing unit (GPU)-based platforms. Far beyond a technological breakthrough, the use of plane or diverging wave transmissions enables attainment of ultrafast frame rates (typically faster than 1000 frames per second) over a large field of view. This concept has also inspired the emergence of completely novel imaging modes which are valuable for ultrasound-based screening, diagnosis, and therapeutic monitoring. In this review article, we present the basic principles and implementation of ultrafast imaging. In particular, present and future applications of ultrafast imaging in biomedical ultrasound are illustrated and discussed.
Collapse
|
24
|
Sarvazyan AP, Urban MW, Greenleaf JF. Acoustic waves in medical imaging and diagnostics. ULTRASOUND IN MEDICINE & BIOLOGY 2013; 39:1133-46. [PMID: 23643056 PMCID: PMC3682421 DOI: 10.1016/j.ultrasmedbio.2013.02.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 12/13/2012] [Accepted: 02/12/2013] [Indexed: 05/03/2023]
Abstract
Up until about two decades ago acoustic imaging and ultrasound imaging were synonymous. The term ultrasonography, or its abbreviated version sonography, meant an imaging modality based on the use of ultrasonic compressional bulk waves. Beginning in the 1990s, there started to emerge numerous acoustic imaging modalities based on the use of a different mode of acoustic wave: shear waves. Imaging with these waves was shown to provide very useful and very different information about the biological tissue being examined. We discuss the physical basis for the differences between these two basic modes of acoustic waves used in medical imaging and analyze the advantages associated with shear acoustic imaging. A comprehensive analysis of the range of acoustic wavelengths, velocities and frequencies that have been used in different imaging applications is presented. We discuss the potential for future shear wave imaging applications.
Collapse
|
25
|
Rotemberg V, Byram B, Palmeri M, Wang M, Nightingale K. Ultrasonic characterization of the nonlinear properties of canine livers by measuring shear wave speed and axial strain with increasing portal venous pressure. J Biomech 2013; 46:1875-81. [PMID: 23726184 DOI: 10.1016/j.jbiomech.2013.04.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 04/20/2013] [Accepted: 04/23/2013] [Indexed: 12/13/2022]
Abstract
Elevated hepatic venous pressure is the primary source of complications in advancing liver disease. Ultrasound imaging is ideal for potential noninvasive hepatic pressure measurements as it is widely used for liver imaging. Specifically, ultrasound based stiffness measures may be useful for clinically monitoring pressure, but the mechanism by which liver stiffness increases with hepatic pressure has not been well characterized. This study is designed to elucidate the nonlinear properties of the liver during pressurization by measuring both hepatic shear wave speed (SWS) and strain with increasing pressure. Tissue deformation during hepatic pressurization was tracked in 8 canine livers using successively acquired 3-D B-mode volumes and compared with concurrently measured SWS. When portal venous pressure was increased from clinically normal (0-5mmHg) to pressures representing highly diseased states at 20mmHg, the liver was observed to expand with axial strain measures up to 10%. At the same time, SWS estimates were observed to increase from 1.5-2m/s at 0-5mmHg (baseline) to 3.25-3.5m/s at 20mmHg.
Collapse
Affiliation(s)
- Veronica Rotemberg
- Department of Biomedical Engineering, Duke University, Room 136 Hudson Hall, Box 90281, Durham, NC 27708, USA.
| | | | | | | | | |
Collapse
|
26
|
Urban MW, Pislaru C, Nenadic IZ, Kinnick RR, Greenleaf JF. Measurement of viscoelastic properties of in vivo swine myocardium using lamb wave dispersion ultrasound vibrometry (LDUV). IEEE TRANSACTIONS ON MEDICAL IMAGING 2013; 32:247-61. [PMID: 23060325 PMCID: PMC3562367 DOI: 10.1109/tmi.2012.2222656] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Viscoelastic properties of the myocardium are important for normal cardiac function and may be altered by disease. Thus, quantification of these properties may aid with evaluation of the health of the heart. Lamb wave dispersion ultrasound vibrometry (LDUV) is a shear wave-based method that uses wave velocity dispersion to measure the underlying viscoelastic material properties of soft tissue with plate-like geometries. We tested this method in eight pigs in an open-chest preparation. A mechanical actuator was used to create harmonic, propagating mechanical waves in the myocardial wall. The motion was tracked using a high frame rate acquisition sequence, typically 2500 Hz. The velocities of wave propagation were measured over the 50-400 Hz frequency range in 50 Hz increments. Data were acquired over several cardiac cycles. Dispersion curves were fit with a viscoelastic, anti-symmetric Lamb wave model to obtain estimates of the shear elasticity, μ(1), and viscosity, μ(2) as defined by the Kelvin-Voigt rheological model. The sensitivity of the Lamb wave model was also studied using simulated data. We demonstrated that wave velocity measurements and Lamb wave theory allow one to estimate the variation of viscoelastic moduli of the myocardial walls in vivo throughout the course of the cardiac cycle.
Collapse
Affiliation(s)
- Matthew W Urban
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.
| | | | | | | | | |
Collapse
|
27
|
Electromechanical wave imaging for noninvasive mapping of the 3D electrical activation sequence in canines and humans in vivo. J Biomech 2012; 45:856-64. [PMID: 22284425 DOI: 10.1016/j.jbiomech.2011.11.027] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2011] [Indexed: 11/22/2022]
Abstract
Cardiovascular diseases rank as America's primary killer, claiming the lives of over 41% of more than 2.4 million Americans. One of the main reasons for this high death toll is the severe lack of effective imaging techniques for screening, early detection and localization of an abnormality detected on the electrocardiogram (ECG). The two most widely used imaging techniques in the clinic are CT angiography and echocardiography with limitations in speed of application and reliability, respectively. It has been established that the mechanical and electrical properties of the myocardium change dramatically as a result of ischemia, infarction or arrhythmia; both at their onset and after survival. Despite these findings, no imaging technique currently exists that is routinely used in the clinic and can provide reliable, non-invasive, quantitative mapping of the regional, mechanical, and electrical function of the myocardium. Electromechanical Wave Imaging (EWI) is an ultrasound-based technique that utilizes the electromechanical coupling and its associated resulting strain to infer to the underlying electrical function of the myocardium. The methodology of EWI is first described and its fundamental performance is presented. Subsequent in vivo canine and human applications are provided that demonstrate the applicability of Electromechanical Wave Imaging in differentiating between sinus rhythm and induced pacing schemes as well as mapping arrhythmias. Preliminary validation with catheter mapping is also provided and transthoracic electromechanical mapping in all four chambers of the human heart is also presented demonstrating the potential of this novel methodology to noninvasively infer to both the normal and pathological electrical conduction of the heart.
Collapse
|
28
|
Provost J, Nguyen VTH, Legrand D, Okrasinski S, Costet A, Gambhir A, Garan H, Konofagou EE. Electromechanical wave imaging for arrhythmias. Phys Med Biol 2011; 56:L1-11. [PMID: 22024555 DOI: 10.1088/0031-9155/56/22/f01] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Electromechanical wave imaging (EWI) is a novel ultrasound-based imaging modality for mapping of the electromechanical wave (EW), i.e. the transient deformations occurring in immediate response to the electrical activation. The correlation between the EW and the electrical activation has been established in prior studies. However, the methods used previously to map the EW required the reconstruction of images over multiple cardiac cycles, precluding the application of EWI for non-periodic arrhythmias such as fibrillation. In this study, new imaging sequences are developed and applied based on flash- and wide-beam emissions to image the entire heart at very high frame rates (2000 fps) during free breathing in a single heartbeat. The methods are first validated by imaging the heart of an open-chest canine while simultaneously mapping the electrical activation using a 64-electrode basket catheter. Feasibility is then assessed by imaging the atria and ventricles of closed-chest, conscious canines during sinus rhythm and during right-ventricular pacing following atrio-ventricular dissociation, i.e., during a non-periodic rhythm. The EW was validated against electrode measurements in the open-chest case, and followed the expected electrical propagation pattern in the closed-chest setting. These results indicate that EWI can be used for the characterization of non-periodic arrhythmias in conditions similar to the clinical setting, in a single heartbeat, and during free breathing.
Collapse
Affiliation(s)
- Jean Provost
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | | | | | | | | | | | | | | |
Collapse
|