1
|
Girodat D, Wieden HJ, Blanchard SC, Sanbonmatsu KY. Geometric alignment of aminoacyl-tRNA relative to catalytic centers of the ribosome underpins accurate mRNA decoding. Nat Commun 2023; 14:5582. [PMID: 37696823 PMCID: PMC10495418 DOI: 10.1038/s41467-023-40404-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 07/27/2023] [Indexed: 09/13/2023] Open
Abstract
Accurate protein synthesis is determined by the two-subunit ribosome's capacity to selectively incorporate cognate aminoacyl-tRNA for each mRNA codon. The molecular basis of tRNA selection accuracy, and how fidelity can be affected by antibiotics, remains incompletely understood. Using molecular simulations, we find that cognate and near-cognate tRNAs delivered to the ribosome by Elongation Factor Tu (EF-Tu) can follow divergent pathways of motion into the ribosome during both initial selection and proofreading. Consequently, cognate aa-tRNAs follow pathways aligned with the catalytic GTPase and peptidyltransferase centers of the large subunit, while near-cognate aa-tRNAs follow pathways that are misaligned. These findings suggest that differences in mRNA codon-tRNA anticodon interactions within the small subunit decoding center, where codon-anticodon interactions occur, are geometrically amplified over distance, as a result of this site's physical separation from the large ribosomal subunit catalytic centers. These insights posit that the physical size of both tRNA and ribosome are key determinants of the tRNA selection fidelity mechanism.
Collapse
Affiliation(s)
- Dylan Girodat
- Theoretical Biology and Biophysics, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Hans-Joachim Wieden
- Department of Microbiology, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Scott C Blanchard
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| | - Karissa Y Sanbonmatsu
- Theoretical Biology and Biophysics, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.
- New Mexico Consortium, Los Alamos, NM, 87545, USA.
| |
Collapse
|
2
|
Rodnina MV. Decoding and Recoding of mRNA Sequences by the Ribosome. Annu Rev Biophys 2023; 52:161-182. [PMID: 37159300 DOI: 10.1146/annurev-biophys-101922-072452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Faithful translation of messenger RNA (mRNA) into protein is essential to maintain protein homeostasis in the cell. Spontaneous translation errors are very rare due to stringent selection of cognate aminoacyl transfer RNAs (tRNAs) and the tight control of the mRNA reading frame by the ribosome. Recoding events, such as stop codon readthrough, frameshifting, and translational bypassing, reprogram the ribosome to make intentional mistakes and produce alternative proteins from the same mRNA. The hallmark of recoding is the change of ribosome dynamics. The signals for recoding are built into the mRNA, but their reading depends on the genetic makeup of the cell, resulting in cell-specific changes in expression programs. In this review, I discuss the mechanisms of canonical decoding and tRNA-mRNA translocation; describe alternative pathways leading to recoding; and identify the links among mRNA signals, ribosome dynamics, and recoding.
Collapse
Affiliation(s)
- Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany;
| |
Collapse
|
3
|
Prabhakar A, Krahn N, Zhang J, Vargas-Rodriguez O, Krupkin M, Fu Z, Acosta-Reyes FJ, Ge X, Choi J, Crnković A, Ehrenberg M, Puglisi EV, Söll D, Puglisi J. Uncovering translation roadblocks during the development of a synthetic tRNA. Nucleic Acids Res 2022; 50:10201-10211. [PMID: 35882385 PMCID: PMC9561287 DOI: 10.1093/nar/gkac576] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/14/2022] [Accepted: 07/22/2022] [Indexed: 11/24/2022] Open
Abstract
Ribosomes are remarkable in their malleability to accept diverse aminoacyl-tRNA substrates from both the same organism and other organisms or domains of life. This is a critical feature of the ribosome that allows the use of orthogonal translation systems for genetic code expansion. Optimization of these orthogonal translation systems generally involves focusing on the compatibility of the tRNA, aminoacyl-tRNA synthetase, and a non-canonical amino acid with each other. As we expand the diversity of tRNAs used to include non-canonical structures, the question arises as to the tRNA suitability on the ribosome. Specifically, we investigated the ribosomal translation of allo-tRNAUTu1, a uniquely shaped (9/3) tRNA exploited for site-specific selenocysteine insertion, using single-molecule fluorescence. With this technique we identified ribosomal disassembly occurring from translocation of allo-tRNAUTu1 from the A to the P site. Using cryo-EM to capture the tRNA on the ribosome, we pinpointed a distinct tertiary interaction preventing fluid translocation. Through a single nucleotide mutation, we disrupted this tertiary interaction and relieved the translation roadblock. With the continued diversification of genetic code expansion, our work highlights a targeted approach to optimize translation by distinct tRNAs as they move through the ribosome.
Collapse
Affiliation(s)
| | | | | | - Oscar Vargas-Rodriguez
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Miri Krupkin
- Department of Structural Biology, Stanford University, Stanford, CA 94305-5126, USA
| | - Ziao Fu
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Francisco J Acosta-Reyes
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Xueliang Ge
- Department of Cell and Molecular Biology, Uppsala University, Uppsala 751 24, Sweden
| | - Junhong Choi
- Department of Structural Biology, Stanford University, Stanford, CA 94305-5126, USA
| | - Ana Crnković
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Måns Ehrenberg
- Department of Cell and Molecular Biology, Uppsala University, Uppsala 751 24, Sweden
| | | | - Dieter Söll
- Correspondence may also be addressed to Dieter Söll.
| | - Joseph Puglisi
- To whom correspondence should be addressed. Tel: +1 650 498 4397;
| |
Collapse
|
4
|
Diffusion control in biochemical specificity. Biophys J 2022; 121:1541-1548. [PMID: 35278424 PMCID: PMC9072584 DOI: 10.1016/j.bpj.2022.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/28/2021] [Accepted: 03/04/2022] [Indexed: 11/20/2022] Open
Abstract
Biochemical specificity is critical in enzyme function, evolution, and engineering. Here we employ an established kinetic model to dissect the effects of reactant geometry and diffusion on product formation speed and accuracy in the presence of cognate (correct) and near-cognate (incorrect) substrates. Using this steady-state model for spherical geometries, we find that, for distinct kinetic regimes, the speed and accuracy of the reactions are optimized on different regions of the geometric landscape. From this model we deduce that accuracy can be strongly dependent on reactant geometric properties even for chemically limited reactions. Notably, substrates with a specific geometry and reactivity can be discriminated by the enzyme with higher efficacy than others through purely diffusive effects. For similar cognate and near-cognate substrate geometries (as is the case for polymerases or the ribosome), we observe that speed and accuracy are maximized in opposing regions of the geometric landscape. We also show that, in relevant environments, diffusive effects on accuracy can be substantial even far from extreme kinetic conditions. Finally, we find how reactant chemical discrimination and diffusion can be related to simultaneously optimize steady-state flux and accuracy. These results highlight how diffusion and geometry can be employed to enhance reaction speed and discrimination, and similarly how they impose fundamental restraints on these quantities.
Collapse
|
5
|
Abstract
Accurate protein synthesis (translation) relies on translation factors that rectify ribosome fluctuations into a unidirectional process. Understanding this process requires structural characterization of the ribosome and translation-factor dynamics. In the 2000s, crystallographic studies determined high-resolution structures of ribosomes stalled with translation factors, providing a starting point for visualizing translation. Recent progress in single-particle cryogenic electron microscopy (cryo-EM) has enabled near-atomic resolution of numerous structures sampled in heterogeneous complexes (ensembles). Ensemble and time-resolved cryo-EM have now revealed unprecedented views of ribosome transitions in the three principal stages of translation: initiation, elongation, and termination. This review focuses on how translation factors help achieve high accuracy and efficiency of translation by monitoring distinct ribosome conformations and by differentially shifting the equilibria of ribosome rearrangements for cognate and near-cognate substrates. Expected final online publication date for the Annual Review of Biochemistry, Volume 91 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Andrei A Korostelev
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA;
| |
Collapse
|
6
|
Kazantsev A, Ignatova Z. Constraints on error rate revealed by computational study of G•U tautomerization in translation. Nucleic Acids Res 2021; 49:11823-11833. [PMID: 34669948 PMCID: PMC8599798 DOI: 10.1093/nar/gkab947] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 11/18/2022] Open
Abstract
In translation, G•U mismatch in codon-anticodon decoding is an error hotspot likely due to transition of G•U from wobble (wb) to Watson-Crick (WC) geometry, which is governed by keto/enol tautomerization (wb-WC reaction). Yet, effects of the ribosome on the wb-WC reaction and its implications for decoding mechanism remain unclear. Employing quantum-mechanical/molecular-mechanical umbrella sampling simulations using models of the ribosomal decoding site (A site) we determined that the wb-WC reaction is endoergic in the open, but weakly exoergic in the closed A-site state. We extended the classical ‘induced-fit’ model of initial selection by incorporating wb-WC reaction parameters in open and closed states. For predicted parameters, the non-equilibrium exoergic wb-WC reaction is kinetically limited by the decoding rates. The model explains early observations of the WC geometry of G•U from equilibrium structural studies and reveals discrimination capacity for the working ribosome operating at non-equilibrium conditions. The equilibration of the exoergic wb-WC reaction counteracts the equilibration of the open-closed transition of the A site, constraining the decoding accuracy and potentially explaining the persistence of the G•U as an error hotspot. Our results unify structural and mechanistic views of codon-anticodon decoding and generalize the ‘induced-fit’ model for flexible substrates.
Collapse
Affiliation(s)
- Andriy Kazantsev
- Institute of Biochemistry and Molecular Biology, Department of Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Zoya Ignatova
- Institute of Biochemistry and Molecular Biology, Department of Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| |
Collapse
|
7
|
Parajuli NP, Mandava CS, Pavlov MY, Sanyal S. Mechanistic insights into translation inhibition by aminoglycoside antibiotic arbekacin. Nucleic Acids Res 2021; 49:6880-6892. [PMID: 34125898 PMCID: PMC8266624 DOI: 10.1093/nar/gkab495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/17/2021] [Accepted: 05/26/2021] [Indexed: 11/13/2022] Open
Abstract
How aminoglycoside antibiotics limit bacterial growth and viability is not clearly understood. Here we employ fast kinetics to reveal the molecular mechanism of action of a clinically used, new-generation, semisynthetic aminoglycoside Arbekacin (ABK), which is designed to avoid enzyme-mediated deactivation common to other aminoglycosides. Our results portray complete picture of ABK inhibition of bacterial translation with precise quantitative characterizations. We find that ABK inhibits different steps of translation in nanomolar to micromolar concentrations by imparting pleotropic effects. ABK binding stalls elongating ribosomes to a state, which is unfavorable for EF-G binding. This prolongs individual translocation step from ∼50 ms to at least 2 s; the mean time of translocation increases inversely with EF-G concentration. ABK also inhibits translation termination by obstructing RF1/RF2 binding to the ribosome. Furthermore, ABK decreases accuracy of mRNA decoding (UUC vs. CUC) by ∼80 000 fold, causing aberrant protein production. Importantly, translocation and termination events cannot be completely stopped even with high ABK concentration. Extrapolating our kinetic model of ABK action, we postulate that aminoglycosides impose bacteriostatic effect mainly by inhibiting translocation, while they become bactericidal in combination with decoding errors.
Collapse
Affiliation(s)
- Narayan Prasad Parajuli
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, SE-75124 Uppsala, Sweden
| | - Chandra Sekhar Mandava
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, SE-75124 Uppsala, Sweden
| | - Michael Y Pavlov
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, SE-75124 Uppsala, Sweden
| | - Suparna Sanyal
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, SE-75124 Uppsala, Sweden
| |
Collapse
|
8
|
Ieong KW, Indrisiunaite G, Prabhakar A, Puglisi JD, Ehrenberg M. N 6-Methyladenosines in mRNAs reduce the accuracy of codon reading by transfer RNAs and peptide release factors. Nucleic Acids Res 2021; 49:2684-2699. [PMID: 33561188 PMCID: PMC7969026 DOI: 10.1093/nar/gkab033] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/09/2021] [Accepted: 02/03/2021] [Indexed: 11/15/2022] Open
Abstract
We used quench flow to study how N6-methylated adenosines (m6A) affect the accuracy ratio between kcat/Km (i.e. association rate constant (ka) times probability (Pp) of product formation after enzyme-substrate complex formation) for cognate and near-cognate substrate for mRNA reading by tRNAs and peptide release factors 1 and 2 (RFs) during translation with purified Escherichia coli components. We estimated kcat/Km for Glu-tRNAGlu, EF-Tu and GTP forming ternary complex (T3) reading cognate (GAA and Gm6AA) or near-cognate (GAU and Gm6AU) codons. ka decreased 10-fold by m6A introduction in cognate and near-cognate cases alike, while Pp for peptidyl transfer remained unaltered in cognate but increased 10-fold in near-cognate case leading to 10-fold amino acid substitution error increase. We estimated kcat/Km for ester bond hydrolysis of P-site bound peptidyl-tRNA by RF2 reading cognate (UAA and Um6AA) and near-cognate (UAG and Um6AG) stop codons to decrease 6-fold or 3-fold by m6A introduction, respectively. This 6-fold effect on UAA reading was also observed in a single-molecule termination assay. Thus, m6A reduces both sense and stop codon reading accuracy by decreasing cognate significantly more than near-cognate kcat/Km, in contrast to most error inducing agents and mutations, which increase near-cognate at unaltered cognate kcat/Km.
Collapse
Affiliation(s)
- Ka-Weng Ieong
- Department of Cell and Molecular Biology, Biomedical Center, Box 596, Uppsala University, Uppsala, Sweden
| | - Gabriele Indrisiunaite
- Department of Cell and Molecular Biology, Biomedical Center, Box 596, Uppsala University, Uppsala, Sweden
| | - Arjun Prabhakar
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305-5126, USA.,Program in Biophysics, Stanford University, Stanford, CA 94305, USA
| | - Joseph D Puglisi
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305-5126, USA
| | - Måns Ehrenberg
- Department of Cell and Molecular Biology, Biomedical Center, Box 596, Uppsala University, Uppsala, Sweden
| |
Collapse
|
9
|
Loveland AB, Demo G, Korostelev AA. Cryo-EM of elongating ribosome with EF-Tu•GTP elucidates tRNA proofreading. Nature 2020; 584:640-645. [PMID: 32612237 PMCID: PMC7483604 DOI: 10.1038/s41586-020-2447-x] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 04/10/2020] [Indexed: 11/13/2022]
Abstract
Ribosomes accurately decode mRNA by proofreading each aminoacyl-tRNA delivered by elongation factor EF-Tu1. Understanding the molecular mechanism of proofreading requires visualizing GTP-catalyzed elongation, which has remained a challenge2–4. Here, time-resolved cryo-EM revealed 33 states following aminoacyl-tRNA delivery by EF-Tu•GTP. Instead of locking cognate tRNA upon initial recognition, the ribosomal decoding center (DC) dynamically monitors codon-anticodon interactions before and after GTP hydrolysis. GTP hydrolysis allows EF-Tu’s GTPase domain to extend away, releasing EF-Tu from tRNA. Then, the 30S subunit locks cognate tRNA in the DC, and rotates, enabling the tRNA to bypass 50S protrusions during accommodation into the peptidyl transferase center. By contrast, the DC fails to lock near-cognate tRNA, allowing dissociation of near-cognate tRNA during both initial selection (before GTP hydrolysis) and proofreading (after GTP hydrolysis). These findings reveal structural similarity between initial selection5,6 and the previously unseen proofreading, which together govern efficient rejection of incorrect tRNA.
Collapse
Affiliation(s)
- Anna B Loveland
- RNA Therapeutics Institute, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Gabriel Demo
- RNA Therapeutics Institute, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA.,Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Andrei A Korostelev
- RNA Therapeutics Institute, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
10
|
Elongation factor-Tu can repetitively engage aminoacyl-tRNA within the ribosome during the proofreading stage of tRNA selection. Proc Natl Acad Sci U S A 2020; 117:3610-3620. [PMID: 32024753 PMCID: PMC7035488 DOI: 10.1073/pnas.1904469117] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Elongation factor Tu (EF-Tu) facilitates rapid and accurate selection of aminoacyl-tRNA (aa-tRNA) by the bacterial ribosome during protein synthesis. We show that EF-Tu dissociates from the ribosome as aa-tRNA navigates the accommodation corridor en route to peptide bond formation. We find that EF-Tu’s release from the ribosome during aa-tRNA selection can be reversible. We also demonstrate that new ternary complex formation, accompanied by futile cycles of GTP hydrolysis, can occur on aa-tRNA bound within the ribosome. These findings inform on the decoding mechanism, the contributions of EF-Tu to the fidelity of translation, and the potential consequences of reduced rates of peptide bond formation on cellular physiology. The substrate for ribosomes actively engaged in protein synthesis is a ternary complex of elongation factor Tu (EF-Tu), aminoacyl-tRNA (aa-tRNA), and GTP. EF-Tu plays a critical role in mRNA decoding by increasing the rate and fidelity of aa-tRNA selection at each mRNA codon. Here, using three-color single-molecule fluorescence resonance energy transfer imaging and molecular dynamics simulations, we examine the timing and role of conformational events that mediate the release of aa-tRNA from EF-Tu and EF-Tu from the ribosome after GTP hydrolysis. Our investigations reveal that conformational changes in EF-Tu coordinate the rate-limiting passage of aa-tRNA through the accommodation corridor en route to the peptidyl transferase center of the large ribosomal subunit. Experiments using distinct inhibitors of the accommodation process further show that aa-tRNA must at least partially transit the accommodation corridor for EF-Tu⋅GDP to release. aa-tRNAs failing to undergo peptide bond formation at the end of accommodation corridor passage after EF-Tu release can be reengaged by EF-Tu⋅GTP from solution, coupled to GTP hydrolysis. These observations suggest that additional rounds of ternary complex formation can occur on the ribosome during proofreading, particularly when peptide bond formation is slow, which may serve to increase both the rate and fidelity of protein synthesis at the expense of GTP hydrolysis.
Collapse
|
11
|
McMahon M, Contreras A, Holm M, Uechi T, Forester CM, Pang X, Jackson C, Calvert ME, Chen B, Quigley DA, Luk JM, Kelley RK, Gordan JD, Gill RM, Blanchard SC, Ruggero D. A single H/ACA small nucleolar RNA mediates tumor suppression downstream of oncogenic RAS. eLife 2019; 8:48847. [PMID: 31478838 PMCID: PMC6776443 DOI: 10.7554/elife.48847] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 09/02/2019] [Indexed: 12/19/2022] Open
Abstract
Small nucleolar RNAs (snoRNAs) are a diverse group of non-coding RNAs that direct chemical modifications at specific residues on other RNA molecules, primarily on ribosomal RNA (rRNA). SnoRNAs are altered in several cancers; however, their role in cell homeostasis as well as in cellular transformation remains poorly explored. Here, we show that specific subsets of snoRNAs are differentially regulated during the earliest cellular response to oncogenic RASG12V expression. We describe a novel function for one H/ACA snoRNA, SNORA24, which guides two pseudouridine modifications within the small ribosomal subunit, in RAS-induced senescence in vivo. We find that in mouse models, loss of Snora24 cooperates with RASG12V to promote the development of liver cancer that closely resembles human steatohepatitic hepatocellular carcinoma (HCC). From a clinical perspective, we further show that human HCCs with low SNORA24 expression display increased lipid content and are associated with poor patient survival. We next asked whether ribosomes lacking SNORA24-guided pseudouridine modifications on 18S rRNA have alterations in their biophysical properties. Single-molecule Fluorescence Resonance Energy Transfer (FRET) analyses revealed that these ribosomes exhibit perturbations in aminoacyl-transfer RNA (aa-tRNA) selection and altered pre-translocation ribosome complex dynamics. Furthermore, we find that HCC cells lacking SNORA24-guided pseudouridine modifications have increased translational miscoding and stop codon readthrough frequencies. These findings highlight a role for specific snoRNAs in safeguarding against oncogenic insult and demonstrate a functional link between H/ACA snoRNAs regulated by RAS and the biophysical properties of ribosomes in cancer.
Collapse
Affiliation(s)
- Mary McMahon
- Helen Diller Family Comprehensive Cancer Center, Department of Urology, University of California, San Francisco, San Francisco, United States
| | - Adrian Contreras
- Helen Diller Family Comprehensive Cancer Center, Department of Urology, University of California, San Francisco, San Francisco, United States
| | - Mikael Holm
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, United States
| | - Tamayo Uechi
- Helen Diller Family Comprehensive Cancer Center, Department of Urology, University of California, San Francisco, San Francisco, United States
| | - Craig M Forester
- Helen Diller Family Comprehensive Cancer Center, Department of Urology, University of California, San Francisco, San Francisco, United States.,Division of Pediatric Allergy, Immunology & Bone Marrow Transplantation, University of California, San Francisco, San Francisco, United States
| | - Xiaming Pang
- Helen Diller Family Comprehensive Cancer Center, Department of Urology, University of California, San Francisco, San Francisco, United States
| | - Cody Jackson
- Gladstone Histology and Light Microscopy Core, Gladstone Institutes, San Francisco, United States
| | - Meredith E Calvert
- Gladstone Histology and Light Microscopy Core, Gladstone Institutes, San Francisco, United States
| | - Bin Chen
- Department of Pediatrics and Human Development, Michigan State University, Grand Rapids, United States.,Department of Pharmacology and Toxicology, Michigan State University, Grand Rapids, United States
| | - David A Quigley
- Helen Diller Family Comprehensive Cancer Center and Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, United States
| | - John M Luk
- Arbele Corporation, Seattle, United States
| | - R Kate Kelley
- Helen Diller Family Comprehensive Cancer Center, Department of Medicine, University of California, San Francisco, San Francisco, United States
| | - John D Gordan
- Helen Diller Family Comprehensive Cancer Center, Department of Medicine, University of California, San Francisco, San Francisco, United States
| | - Ryan M Gill
- Department of Pathology, University of California, San Francisco, San Francisco, United States
| | - Scott C Blanchard
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, United States
| | - Davide Ruggero
- Helen Diller Family Comprehensive Cancer Center, Department of Urology, University of California, San Francisco, San Francisco, United States.,Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
12
|
Holm M, Mandava CS, Ehrenberg M, Sanyal S. The mechanism of error induction by the antibiotic viomycin provides insight into the fidelity mechanism of translation. eLife 2019; 8:46124. [PMID: 31172942 PMCID: PMC6594751 DOI: 10.7554/elife.46124] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 06/04/2019] [Indexed: 01/04/2023] Open
Abstract
Applying pre-steady state kinetics to an Escherichia-coli-based reconstituted translation system, we have studied how the antibiotic viomycin affects the accuracy of genetic code reading. We find that viomycin binds to translating ribosomes associated with a ternary complex (TC) consisting of elongation factor Tu (EF-Tu), aminoacyl tRNA and GTP, and locks the otherwise dynamically flipping monitoring bases A1492 and A1493 into their active conformation. This effectively prevents dissociation of near- and non-cognate TCs from the ribosome, thereby enhancing errors in initial selection. Moreover, viomycin shuts down proofreading-based error correction. Our results imply a mechanism in which the accuracy of initial selection is achieved by larger backward rate constants toward TC dissociation rather than by a smaller rate constant for GTP hydrolysis for near- and non-cognate TCs. Additionally, our results demonstrate that translocation inhibition, rather than error induction, is the major cause of cell growth inhibition by viomycin.
Collapse
Affiliation(s)
- Mikael Holm
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | | | - Måns Ehrenberg
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Suparna Sanyal
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
13
|
Lant JT, Berg MD, Heinemann IU, Brandl CJ, O'Donoghue P. Pathways to disease from natural variations in human cytoplasmic tRNAs. J Biol Chem 2019; 294:5294-5308. [PMID: 30643023 DOI: 10.1074/jbc.rev118.002982] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Perfectly accurate translation of mRNA into protein is not a prerequisite for life. Resulting from errors in protein synthesis, mistranslation occurs in all cells, including human cells. The human genome encodes >600 tRNA genes, providing both the raw material for genetic variation and a buffer to ensure that resulting translation errors occur at tolerable levels. On the basis of data from the 1000 Genomes Project, we highlight the unanticipated prevalence of mistranslating tRNA variants in the human population and review studies on synthetic and natural tRNA mutations that cause mistranslation or de-regulate protein synthesis. Although mitochondrial tRNA variants are well known to drive human diseases, including developmental disorders, few studies have revealed a role for human cytoplasmic tRNA mutants in disease. In the context of the unexpectedly large number of tRNA variants in the human population, the emerging literature suggests that human diseases may be affected by natural tRNA variants that cause mistranslation or de-regulate tRNA expression and nucleotide modification. This review highlights examples relevant to genetic disorders, cancer, and neurodegeneration in which cytoplasmic tRNA variants directly cause or exacerbate disease and disease-linked phenotypes in cells, animal models, and humans. In the near future, tRNAs may be recognized as useful genetic markers to predict the onset or severity of human disease.
Collapse
Affiliation(s)
| | | | | | | | - Patrick O'Donoghue
- From the Departments of Biochemistry and .,Chemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| |
Collapse
|