1
|
Li H, Huang Z, Zhang C, Wang Y, Zhang X, Liang C, Zhang ZC. Affinity descriptor of metal catalysts: concept, measurement and application of oxygen affinity in the catalytic transformation of oxygenates. Chem Soc Rev 2025; 54:1905-1923. [PMID: 39836462 DOI: 10.1039/d4cs00472h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Multiple oxygenate groups in biomass-based feedstocks are open to multiple catalytic pathways and products, typically resulting in low selectivity for the desired products. In this context, strategies for rational catalyst design are critical to obtain high selectivity for the desired products in biomass upgrading. The Sabatier principle provides a conceptual framework for designing optimal catalysts by following the volcanic relationship between catalyst activity for a reaction and the binding strength of a substrate on a catalyst. The affinity descriptor of catalysts, which scales the interaction strength of the functional groups of substrates with catalysts, can potentially be developed to correlate with catalyst performance in reactions. Specifically, the oxygen affinity of catalysts, as a measure of the interaction strength between oxygenates and catalysts, can be applied to rationalize the oxygenate transformation and guide the rational design of efficient catalysts based on the Sabatier principle. This review highlights the fundamental basis and applications of affinity descriptors in catalysis, with a focus on the oxygen affinity of catalysts for the transformation of biomass-derived oxygenate compounds.
Collapse
Affiliation(s)
- Huixiang Li
- National-local Joint Engineering Research Center of Biomass Refining and High-quality Utilization, Changzhou University, Changzhou 213164, China.
| | | | - Chaofeng Zhang
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Yehong Wang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, Liaoning, China
| | - Xiaoqiang Zhang
- National-local Joint Engineering Research Center of Biomass Refining and High-quality Utilization, Changzhou University, Changzhou 213164, China.
| | - Changhui Liang
- National-local Joint Engineering Research Center of Biomass Refining and High-quality Utilization, Changzhou University, Changzhou 213164, China.
| | - Z Conrad Zhang
- National-local Joint Engineering Research Center of Biomass Refining and High-quality Utilization, Changzhou University, Changzhou 213164, China.
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, Liaoning, China
| |
Collapse
|
2
|
Sodium Silicate Catalyst for Synthesis Monoacylglycerol and Diacylglycerol-Rich Structured Lipids: Product Characteristic and Glycerolysis–Interesterification Kinetics. BULLETIN OF CHEMICAL REACTION ENGINEERING & CATALYSIS 2022. [DOI: 10.9767/bcrec.17.2.13306.250-262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Sodium silicate as heterogeneous base catalysts is more environmentally friendly and easily separated by filtration. The objective of this research was to evaluate the activated sodium silicate as catalyst for synthesis of monoacylglycerol (MAG) and diacylglycerol (DAG)-rich structured lipids (SLs) from a palm olein-stearin blend. Sodium silicate was activated and functional group was characterized. Reaction was performed using 5% catalyst (w/w) at various reaction temperature (70–120 °C) for 3 h in a batch stirred tank reactor. Physical properties of SLs, such as melting point, slip melting point, and hardness of SLs were determined. Reaction kinetics were also evaluated. The results show that Si−O bending was reduced and shifted to a Si−O−Na and Si−O−Si functional groups after sodium silicate activation. Temperature had a significant effect on SLs composition at higher than 90 °C. An increase in temperature produced more MAG, resulting in better product physical properties. The best reaction condition was at 110 °C. Rate constants and the Arrhenius equation were also obtained for each reaction step. In summary, the activated sodium silicate catalyzed glycerolysis-interesterification reaction, which produced MAG and DAG at temperature higher than 90 °C. Therefore, the physical properties of SLs were improved. Copyright © 2022 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).
Collapse
|
3
|
Mendes PSF, Siradze S, Pirro L, Thybaut JW. Extracting kinetic information in catalysis: an automated tool for the exploration of small data. REACT CHEM ENG 2022. [DOI: 10.1039/d1re00215e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Kinetically relevant information for heterogeneously catalysed reactions is automatically extracted from small datasets by means of a newly-developed machine learning chemically-enriched tool.
Collapse
Affiliation(s)
- Pedro S. F. Mendes
- Laboratory for Chemical Technology, Department of Materials, Textiles and Chemical Engineering, Ghent University, Technologiepark 125, 9052 Ghent, Belgium
| | - Sébastien Siradze
- Laboratory for Chemical Technology, Department of Materials, Textiles and Chemical Engineering, Ghent University, Technologiepark 125, 9052 Ghent, Belgium
| | - Laura Pirro
- Laboratory for Chemical Technology, Department of Materials, Textiles and Chemical Engineering, Ghent University, Technologiepark 125, 9052 Ghent, Belgium
| | - Joris W. Thybaut
- Laboratory for Chemical Technology, Department of Materials, Textiles and Chemical Engineering, Ghent University, Technologiepark 125, 9052 Ghent, Belgium
| |
Collapse
|
4
|
Omojola T, Logsdail AJ, van Veen AC, Nastase SAF. A quantitative multiscale perspective on primary olefin formation from methanol. Phys Chem Chem Phys 2021; 23:21437-21469. [PMID: 34569573 DOI: 10.1039/d1cp02551a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The formation of the first C-C bond and primary olefins from methanol over zeolite and zeotype catalysts has been studied for over 40 years. Over 20 mechanisms have been proposed for the formation of the first C-C bond. In this quantitative multiscale perspective, we decouple the adsorption, desorption, mobility, and surface reactions of early species through a combination of vacuum and sub-vacuum studies using temporal analysis of products (TAP) reactor systems, and through studies with atmospheric fixed bed reactors. These results are supplemented with density functional theory calculations and data-driven physical models, using partial differential equations, that describe the temporal and spatial evolution of species. We consider the effects of steam, early degradation species, and product masking due to the inherent autocatalytic nature of the process, which all complicate the observation of the primary olefin(s). Although quantitative spectroscopic determination of the lifetimes, surface mobility, and reactivity of adspecies is still lacking in the literature, we observe that reaction barriers are competitive with adsorption enthalpies and/or activation energies of desorption, while facile diffusion occurs in the porous structures of the zeolite/zeotype catalysts. Understanding the various processes allows for quantitative evaluation of their competing energetics, which leads to molecular insights as to what governs the catalytic activity during the conversion of methanol to primary olefins over zeolite/zeotype catalysts.
Collapse
Affiliation(s)
- Toyin Omojola
- Department of Chemical Engineering, Claverton Down, University of Bath, Bath BA2 7AY, UK. .,School of Engineering, Library Road, University of Warwick, Coventry CV4 7AL, UK
| | - Andrew J Logsdail
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, UK.
| | - André C van Veen
- School of Engineering, Library Road, University of Warwick, Coventry CV4 7AL, UK
| | - Stefan Adrian F Nastase
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, UK.
| |
Collapse
|
5
|
Lund CRF, Tatarchuk B, Cardona-Martínez N, Hill JM, Sanchez-Castillo MA, Huber GW, Román-Leshkov Y, Simonetti D, Pagan-Torres Y, Schwartz TJ, Motagamwala AH. A Career in Catalysis: James A. Dumesic. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Carl R. F. Lund
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Bruce Tatarchuk
- Center for Microfibrous Materials, Department of Chemical Engineering, Auburn University, Auburn, Alabama 36849 United States
| | - Nelson Cardona-Martínez
- Department of Chemical Engineering, University of Puerto Rico - Mayagüez, Mayagüez 00681-9000, Puerto Rico
| | - Josephine M. Hill
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Marco A. Sanchez-Castillo
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Manuel Nava 6, 78210 San Luis Potosí, Mexico
| | - George W. Huber
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Yuriy Román-Leshkov
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 United States
| | - Dante Simonetti
- Department of Chemical and Biomolecular Engineering, University of California-Los Angeles, Los Angeles, California 90095 United States
| | - Yomaira Pagan-Torres
- Department of Chemical Engineering, University of Puerto Rico - Mayagüez, Mayagüez 00681-9000, Puerto Rico
| | - Thomas J. Schwartz
- Department of Chemical and Biomedical Engineering, University of Maine, Orono, Maine 04469, United States
| | - Ali Hussain Motagamwala
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
6
|
Mendes PSF, Siradze S, Pirro L, Thybaut JW. Open Data in Catalysis: From Today's Big Picture to the Future of Small Data. ChemCatChem 2020. [DOI: 10.1002/cctc.202001132] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Pedro S. F. Mendes
- Laboratory for Chemical Technology Department of Materials Textiles and Chemical Engineering Ghent University Technologiepark 125 9052 Ghent Belgium
| | - Sébastien Siradze
- Laboratory for Chemical Technology Department of Materials Textiles and Chemical Engineering Ghent University Technologiepark 125 9052 Ghent Belgium
| | - Laura Pirro
- Laboratory for Chemical Technology Department of Materials Textiles and Chemical Engineering Ghent University Technologiepark 125 9052 Ghent Belgium
| | - Joris W. Thybaut
- Laboratory for Chemical Technology Department of Materials Textiles and Chemical Engineering Ghent University Technologiepark 125 9052 Ghent Belgium
| |
Collapse
|
7
|
Batchu R, Galvita VV, Alexopoulos K, Glazneva TS, Poelman H, Reyniers MF, Marin GB. Ethanol dehydration pathways in H-ZSM-5: Insights from temporal analysis of products. Catal Today 2020. [DOI: 10.1016/j.cattod.2019.04.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
8
|
Abstract
The achievement of new economically viable chemical processes often involves the translation of observed lab-scale phenomena into performance in an industrial reactor. In this work, the in silico design and optimization of an industrial ethanol dehydration reactor were performed, employing a multiscale model ranging from nano-, over micro-, to macroscale. The intrinsic kinetics of the elementary steps was quantified through ab initio obtained rate and equilibrium coefficients. Heat and mass transfer limitations for the industrial design case were assessed via literature correlations. The industrial reactor model developed indicated that it is not beneficial to utilize feeds with high ethanol content, as they result in lower ethanol conversion and ethene yield. Furthermore, a more pronounced temperature drop over the reactor was simulated. It is preferred to use a more H2O-diluted feed for the operation of an industrial ethanol dehydration reactor.
Collapse
|
9
|
Grajciar L, Heard CJ, Bondarenko AA, Polynski MV, Meeprasert J, Pidko EA, Nachtigall P. Towards operando computational modeling in heterogeneous catalysis. Chem Soc Rev 2018; 47:8307-8348. [PMID: 30204184 PMCID: PMC6240816 DOI: 10.1039/c8cs00398j] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Indexed: 12/19/2022]
Abstract
An increased synergy between experimental and theoretical investigations in heterogeneous catalysis has become apparent during the last decade. Experimental work has extended from ultra-high vacuum and low temperature towards operando conditions. These developments have motivated the computational community to move from standard descriptive computational models, based on inspection of the potential energy surface at 0 K and low reactant concentrations (0 K/UHV model), to more realistic conditions. The transition from 0 K/UHV to operando models has been backed by significant developments in computer hardware and software over the past few decades. New methodological developments, designed to overcome part of the gap between 0 K/UHV and operando conditions, include (i) global optimization techniques, (ii) ab initio constrained thermodynamics, (iii) biased molecular dynamics, (iv) microkinetic models of reaction networks and (v) machine learning approaches. The importance of the transition is highlighted by discussing how the molecular level picture of catalytic sites and the associated reaction mechanisms changes when the chemical environment, pressure and temperature effects are correctly accounted for in molecular simulations. It is the purpose of this review to discuss each method on an equal footing, and to draw connections between methods, particularly where they may be applied in combination.
Collapse
Affiliation(s)
- Lukáš Grajciar
- Department of Physical and Macromolecular Chemistry
, Faculty of Science
, Charles University in Prague
,
128 43 Prague 2
, Czech Republic
.
;
;
| | - Christopher J. Heard
- Department of Physical and Macromolecular Chemistry
, Faculty of Science
, Charles University in Prague
,
128 43 Prague 2
, Czech Republic
.
;
;
| | - Anton A. Bondarenko
- TheoMAT group
, ITMO University
,
Lomonosova 9
, St. Petersburg
, 191002
, Russia
| | - Mikhail V. Polynski
- TheoMAT group
, ITMO University
,
Lomonosova 9
, St. Petersburg
, 191002
, Russia
| | - Jittima Meeprasert
- Inorganic Systems Engineering group
, Department of Chemical Engineering
, Faculty of Applied Sciences
, Delft University of Technology
,
Van der Maasweg 9
, 2629 HZ Delft
, The Netherlands
.
| | - Evgeny A. Pidko
- TheoMAT group
, ITMO University
,
Lomonosova 9
, St. Petersburg
, 191002
, Russia
- Inorganic Systems Engineering group
, Department of Chemical Engineering
, Faculty of Applied Sciences
, Delft University of Technology
,
Van der Maasweg 9
, 2629 HZ Delft
, The Netherlands
.
| | - Petr Nachtigall
- Department of Physical and Macromolecular Chemistry
, Faculty of Science
, Charles University in Prague
,
128 43 Prague 2
, Czech Republic
.
;
;
| |
Collapse
|
10
|
Van der Borght K, Batchu R, Galvita VV, Alexopoulos K, Reyniers MF, Thybaut JW, Marin GB. Insights into the Reaction Mechanism of Ethanol Conversion into Hydrocarbons on H-ZSM-5. Angew Chem Int Ed Engl 2016; 55:12817-21. [DOI: 10.1002/anie.201607230] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Kristof Van der Borght
- Laboratory for Chemical Technology; Ghent University; Technologiepark 914 9052 Gent Belgium
| | - Rakesh Batchu
- Laboratory for Chemical Technology; Ghent University; Technologiepark 914 9052 Gent Belgium
| | - Vladimir V. Galvita
- Laboratory for Chemical Technology; Ghent University; Technologiepark 914 9052 Gent Belgium
| | | | | | - Joris W. Thybaut
- Laboratory for Chemical Technology; Ghent University; Technologiepark 914 9052 Gent Belgium
| | - Guy B. Marin
- Laboratory for Chemical Technology; Ghent University; Technologiepark 914 9052 Gent Belgium
| |
Collapse
|
11
|
Van der Borght K, Batchu R, Galvita VV, Alexopoulos K, Reyniers MF, Thybaut JW, Marin GB. Insights into the Reaction Mechanism of Ethanol Conversion into Hydrocarbons on H-ZSM-5. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201607230] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kristof Van der Borght
- Laboratory for Chemical Technology; Ghent University; Technologiepark 914 9052 Gent Belgium
| | - Rakesh Batchu
- Laboratory for Chemical Technology; Ghent University; Technologiepark 914 9052 Gent Belgium
| | - Vladimir V. Galvita
- Laboratory for Chemical Technology; Ghent University; Technologiepark 914 9052 Gent Belgium
| | | | | | - Joris W. Thybaut
- Laboratory for Chemical Technology; Ghent University; Technologiepark 914 9052 Gent Belgium
| | - Guy B. Marin
- Laboratory for Chemical Technology; Ghent University; Technologiepark 914 9052 Gent Belgium
| |
Collapse
|
12
|
|
13
|
Reaction path analysis for 1-butanol dehydration in H-ZSM-5 zeolite: Ab initio and microkinetic modeling. J Catal 2015. [DOI: 10.1016/j.jcat.2015.07.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
14
|
Catalytic cracking of n-alkane naphtha: The impact of olefin addition and active sites differentiation. J Catal 2015. [DOI: 10.1016/j.jcat.2015.04.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|